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Introduction

__Very often one has, for a single sample, a signal with thousands
of points, e.g. 2D-NMR, 2D-Fluorescence, Images etc.

_ The analysis of these complex signals is often only possible
using chemometric methods to extract meaningful information.

__The main concern in this case is the constraint of available
computer resources, in particularly memory, and computation
speed.

Hence...
_ There is a growing need for data treatment methods for such

very wide data sets which usually contain a large number of
objects and a very large number of variables.
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Outlook

__ Is often better to perform calculations in the PC-space, rather than
in the original space.

__ Conceptually the PCT is similar to FT (Fourier Transform):

PCA is performed to create a new domain (PC-space)

FT: time domain - frequency domain
PCT: original domain > PC domain

Calculations are simplified in this new domain

FT: convolution, noise reduction, etc.
PCT: MVA on a smaller set of dimensions (PCs)

Results are back-transformed into the original space

“Inverse FT”: frequency domain - time domain.
“Inverse PCT": PC domain - original domain.
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Qutline

__ PCT framework will be shown in:

.. Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

;. Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:» Quter-Product PCT-PCA
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PCT-PLS1

The motivation
_ PLS is one of the most widely used regression techniques.

_ PLS is known as a soft-modelling technique.
i.e. no a priori assumption is made about the model structure.

_ PLS needs a reliable estimation of the predictive ability.
i.e. @ major concern is to avoid over- or under-fitting (robustness).

_ PLS applied to very wide datasets can make huge demands on
computer resources, especially memory.
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PCT-PLS1
The model:

Y(nll) = X(n,m) bp|_51(m,1) + f(n,l)l Where m >>nN
(original space)

The PCT approach:

1. Decomposition

Xinm) = Txn, ) P'xaom) + Eqnm)
(NIPALS or SVD)

2. PCT-PLS
Y1) = Txnk Pecrpisiey + Fina)
(PC space)
as k << m
— increase the speed of predictive power assessing

Barros AS, Rutledge DN, "Principal Components Transform-Partial Least Squares regression

(PCT-PLS): A novel method to accelerate cross-validation in PLS regression”, Chemom. Intell.
Lab. Syst., 73, 245-255, 2004. 6/33



PCA PCT-PLS1

Ty
Py

-]

PCT-PLS1

-]

yPCT-PLS1
PCT-PLS1

v U

yPCT-PLS1

=

PCT-PLS1

=3

PCT-PLS1

PCT-PLS1 / PLS1 relationships

PLS1

-]

PLS1

-]

yPLS1

v

PLS1

v

yPLS1

=

PLS1

=3

PLS1

PCA

PCT-PLS1

PCT-PLS1 PLS1
Tocr-pist Toisi
T pcr-pisi Topist
PyPTocrpist Ppisi
PyPCT—PLSl PyPLSl
PyW'orpisi Wi s
PybTocr.pis b s,

7/33



Matlab code snippet

X = load(‘'xdata.txt’);
y = load(‘ydata.txt’);

[U S V] = SVD( X*X'");
T = U * sqgrt (S);

PCT-PLS1

CV is much faster in

% cross-validation : recover the optimal
% number of Latent Variables (1lv)
[press 1lv] = plslcv( T, y );

optional - if one needs to look at the

b coefficients in the original space
lvopt = find( y == min(y));

[bpct bOpct] = plsl( T, vy, lvopt)jj

> T(n, k) than in X(n, m) as
m >> k

To recover the b
_ vector in the original

bplsl = V * bpct’;

" space using the
optimal number of LVs
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PCT-PLS b vector
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(the b vectors are the same for both approaches)



__ PCT framework will be shown in:
:: Partial Least Squares regression (PCT-PLS1)
:: Segmented PCT-PLS1
.. Two-Dimensional Correlation Spectroscopy (PCT-2DCQOS)

.. OQuter-Product PCT-PCA
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Segmented PCT-PLS1

Let :
X, my = Txn, 1y Pxk, m)
X (n, = [Xl(n m1)|X2(n m2)| |Xq(n,mq)] =

[ 1(n k1) 1(k1 m1)|T2(n k2) P 2(k2,m2) "'qu(n,kq)PTq(kq,mq)]

whereml +m2+ ...+ mg=m

Concatenating the T, matrices:

Q(n ki1+k2+...+kq) — [Tl(n k1)|T2(n k2)| | (n,kq)]
Q can be decomposed as:

Q(n, k1+k2+...4+kq) — TPCT(n,h)PTPCT(h, k1+k2+...+kq)

or

Q(n, k1+k2+...+kq) = TPCT(n,h)[ PTPCT1(h, k1)| PTPCTZ(h, k2)| oo | PTPCTq(h, kq)]
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Segmented PCT-PLS1

Q =T PT
(n, k1+k2+...+kq) PCT(n,h)F PCT(h, k1+k2+...+kq)

PCT-PLS1:
Yin,1) = Tecrinny Pecrny + finny

- assess model dimensionality
- explore scores, etc.

However...
How to reconstruct the b, ¢ vector?

» Following the PCT-PLS one knows that:

bPLS(m,l) = PX(m,h) bPCT(h,l)

but P, can be very wide...
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Segmented PCT-PLS1

From:

Q. k1+k2+...+kc(4:)| = Tocrinm [ PTectih, ki) | PTrctam. k2) | -+ | PTpcTam, ko)l
an

Xin, my = [";jl(n,kl)PTukl,ml)|T2(n,k2) PTsu,m2yl [ T k)P atka,map ]
an

y(n,1) = TPCT(n,h) bPCT(h,1) + f(n,1)

One can shows that:

bPLSl(ml,l) = Pl(ml,kl)PTPCTl(kl,h)bPCT(h,l)

bPLSZ(mZ,l) P2(m2,k2)PTPCTZ(kZ,h)bPCT(h,l)

b sq(ma,1) = Pa(ma,ka)P peraka,nPrcrin,1)

bPLS(m,1)=[bPLSI(m1,1)|bPLSZ(mZ,l)l"' | bPLSq(mq,l)]
- concatenation by rows
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Segmented PCT-PLS1

1. To increase the performance of SegPCT:
instead of

Xin, my = [Xin,m) Xommayl o 1Xq,ma]

one can use the kernel XX approach for each segment:
[ X XT, | XOoXT, | o] X XT ]
to recover the scores and the loadings.

2. The scores and loadings in the original-variable space are
reconstructed independently

as such:

to assess the model dimensionality the loadings in the
original-variable space does not have to be reconstructed.
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Segmented PCT-PLS1

Matrix size PCT-PLS1 SegPCT-PLS1

Time Memory* Time Memory*¥ Segment
(s) (Mbytes) (s) (Mbytes) size

[100, 100000] 49 39 (65) 106 7.6 (15.4) 1000
[100, 250000] 132 98 (99) 194 5.4 (15.4) 2500
[100, 500000] 298 195 (197) 302 6.3 (15.4) 5000
[100, 750000] 891 221 (292) 413 7.3(15.4) 7500
[100, 1000000] 2185 220 (391) 518 8.4 (15.4) 10000

(*) Memory values of the working set of the algorithms (usage of the main
memory to perform the calculations)
Values between parentheses are due to the amount of allocated virtual

memory.

- For very wide matrices SegPCT-PLS1 is more efficient
(speed and memory) than PCT-PLS1.

- For moderated wide matrices the PCT-PLS1 should be
used instead of SegPCT-PLS1.
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__ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

.. Two-Dimensional Correlation Spectroscopy (PCT-2DCQOS)

. OQuter-Product PCT-PCA
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2DCOS

The motivation

_ 2DCOS is spectral technique for evaluating 2-way datasets obtained
when a sample is subject to an external sequential perturbation

_ 2DCOS detects in-phase (synchronous) and out-of-phase
(asynchronous) correlations between spectral intensity variations

2DCOS emphasises or detect important variations that cannot be
detect in the 1D spectrum.
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2DCOS

The synchronous spectrum:
cI)(v1, v2)

:: represents the similarity between two, v1 and v2, separated spectral
intensity variations as a function of the perturbation

The Asynchronous spectrum:

\P(v1 , V2)

.. describes the dissimilarity between two, v1 and v2, separated spectral
intensity variations as a function of the perturbation

cI)(m, m) = XT(m, n) X(n, m)

\P(m, m) = XT(m, n) H(n, n) X(n, m) i { 0 if j=k
=11 _ '
k A k-j) otherwise

H : Hilbert-Noda transform matrix
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2DCOS

The PCT approach for the synchronous spectrum

VYT
P, my = X' (m, ny X

n, m)

.. decomposition of X as X = TPT

cI)(m, m) = I:,(m, k) TT(k, n) T(n, k) I:,T(k, m)

:: pre-multiplying by PT and post-multiplying by P and as PTP = I then:

PT(k, m) cI)( P(m, k) = TT(k, n) T(n, K)

m, m)
;o or
Pocrimm = Tk n) Tk = one could perform 2DCOS on the scores

D@m= P k) Prctim, my Pk, my 2 2DCOS in the original space

m, m)
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2DCOS

The PCT approach for the asynchronous spectrum

X

YT
¥in, m =X, n H

n, n) “*(n, m)

.. decomposition of X as X = TPT

— T T
\P( ) P(m, K) T (k, ) H(n, n)T(n, k) P (k, m)

m, m

:: pre-multiplying by PT and post-multiplying by P and as PTP = I then:

PT(k, m) cI)( P(m, k) = TT(k, n) H(ﬂ, n) T(n, K)

m, m)
.. Or

Y m =P ¥ petim m Pk m = 2DCOS in the original space

m, m)
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arbitrary intensity

Simulated dataset

. band 17 decreases at a given rate
> bands 53 and 83 increases at different rates
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2DCOS

,» band 53 change in the same
direction as band 83

» band 17 change in the opposite
direction of bands 53 and 83
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PCT-2DCOS
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2DCOS

. PCT-2DCOS allows to build in an interactive way the 2DCOS spectra

For the Asynchronous spectrum:

Just need to calculate this once
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__ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

;. Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:» OQuter-Product PCT-PCA
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OP-PCT-PCA

:: The method joins the signals acquired in two different domains by
the means of Cartesian product combination between all the variables
(points) of both signals.

:: The obtained supra-matrix (K) is calculated from the original signal
matrices which contains all the information provided by both
independent domains.

Kiym.py = Xin,m) © Y, p)

ol

1 mxp 1 m 1 P
k' xT. yT.
|

where:

n : number of samples

m : number of variables of domain X

p : number of variables of domain Y 26/33
® : Outer-Product operator



OP-PCT-PCA

m.p : .
K : :
S (1, m.p) :

m
= unfold
1 m.p

... surface link between the two domains
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OP-PCT-PCA

.. This technique can produce very wide datasets, which can be very
difficult to analyse due to computer resource constraints.

.. Therefore, instead of working in the original-variable space (K) one

can work in the compressed PC-space (PCT).
- one does not need to calculate the K explicitly
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OP-PCT-PCA

PCA decomposition of both domains:

X(n, m) — TX(n, kX) PTX(kX, m)

Yo, = Tvin, k) Py, p)
Outer Product of the Scores:

Q(n, kX. KY) — TX(n, ) © TY(n, KY)
PCA decomposition of the Q matrix (PCT framework):

Q(n, kX . kY) — TPCT(n, h) PTPCT(h, kX . kY)
Matrix Q is much smaller than matrix K as (kX . kY) << (m . p)

From the PCT properties it follows that:

Toer = T .. the PCT scores are equal to the scores of the original-
variable space (K)
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For each one of the h PCT-PCs the Ppcry . «y, ny Matrix is
unfolded as:

PPCTl(kX, KY) < PPCT(kX . kY,1)
PPCTZ(kX, KY) < PPCT(kX . KY,2)
PPCTh(kX, KY) < PPCT(kX . kY,h)

to obtain the loadings in the original-variable space:

P1(m, p) — PX(m, kX)PPCTl(kX,kY)PTY(kY, p)
2(m, p) PX(m, kX)PPCTZ(kX,kY)PTY(kY, )

Pom, p) = Px(m, kX)PPCTh(kX,kY)PTY(kY, p)

P,, P,, ..., P, are folded-back to:

>

I:1(m.p, 1)/ PZ(m.p,Z)I e Ph(m.p,h)

and concatenated: P=[P, | P, | ... | P, ]

OP-PCT-PCA
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OP-PCT-PCA

11 OP-PCA decomposition of a K45 490625y Matrix was compared to the
PCT-OP-PCA decomposition of the Q45 4545
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log(eigenvalues)

T
o OP-PCT
+ OP-PCA

Eigenvalues profiles for
OP-PCA and PCT-OP-PCA

OP-PCT-PCA

- OP-PCA took 324 s and 147
Mbytes.

- PCT-OP-PCA took 196 s and
around 1 Mbyte.

- The scores, the loadings and the
eigenvalues of both approaches are
equal.

32/33



Conclusions

e The PCT framework seems to be very useful in several MVA
contexts.

e The PCT injection into the MVA methods is straightforward.

e The PCT framework allows interactive approaches for modelling.

e The PCT is inherently parallel (for distributed computing)
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