Applications of the Principal Components Transform concept

António Barros & D.N. Rutledge Universidade de Aveiro & Institut National Agronomique Paris-Grignon _ Very often one has, for a single sample, a signal with thousands of points, e.g. 2D-NMR, 2D-Fluorescence, Images etc.

_ The analysis of these complex signals is often only possible using chemometric methods to extract meaningful information.

_ The main concern in this case is the constraint of available computer resources, in particularly memory, and computation speed.

Hence...

_ There is a growing need for data treatment methods for such very wide data sets which usually contain a **large number** of objects and a **very large number** of variables.

Outlook

_ Is often better to perform calculations in the **PC-space**, rather than in the **original space**.

_ Conceptually the PCT is similar to FT (Fourier Transform):

PCA is performed to create a new domain (PC-space)

FT: time domain → frequency domain PCT: original domain → PC domain

Calculations are simplified in this new domain

FT: convolution, noise reduction, etc. PCT: MVA on a smaller set of dimensions (PCs)

Results are back-transformed into the original space

"Inverse FT": frequency domain → time domain.
"Inverse PCT": PC domain → original domain.

Outline

_ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

:: Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:: Outer-Product PCT-PCA

The motivation

- **PLS** is one of the most widely used regression techniques.
- _ **PLS** is known as a soft-modelling technique.

 i.e. no a priori assumption is made about the model structure.
- _ **PLS** needs a reliable estimation of the predictive ability.
 i.e. a major concern is to avoid over- or under-fitting (robustness).
- **_ PLS** applied to very wide datasets can make huge demands on computer resources, especially memory.

The model:

$$\mathbf{y}_{(n,1)} = \mathbf{X}_{(n,m)} \mathbf{b}_{PLS1(m,1)} + \mathbf{f}_{(n,1)}$$
, where m >> n (original space)

The PCT approach:

1. Decomposition

$$\mathbf{X}_{(n,m)} = \mathbf{T}_{X(n, k)} \mathbf{P}^{T}_{X(k,m)} + \mathbf{E}_{(n,m)}$$
(NIPALS or SVD)

2. PCT-PLS

$$\mathbf{y}_{(n,1)} = \mathbf{T}_{X(n,k)} \mathbf{b}_{PCT-PLS1(k,1)} + \mathbf{f}_{(n,1)}$$
(PC space)

as k << m

- increase the speed of predictive power assessing

PCT-PLS1 / PLS1 relationships

PCA	PCT-PLS1	PLS1				
\mathbf{T}_{X}	T _{PCT-PLS1}	T _{PLS1}				
\mathbf{P}_{X}	T _{yPCT-PLS1}	T _{yPLS1}				
	P _{PCT-PLS1}	\mathbf{P}_{PLS1}				
	P _{yPCT-PLS1}	P _{yPLS1}	PCA	PCT-PLS1		PLS1
	W _{PCT-PLS1}	W _{PLS1}	\mathbf{T}_{X}	T _{PCT-PLS1}	=	\mathbf{T}_{PLS1}
	b _{PCT-PLS1}	b _{PLS1}	P _X	T _{yPCT-PLS1}	=	T _{yPLS1}
				P _X P ^T _{PCT-PLS1}	=	P _{PLS1}
				P _{yPCT-PLS1}	=	P _{yPLS1}
				P _X W ^T _{PCT-PLS1}	=	W _{PLS1}
				P _X b ^T _{PCT-PLS1}		b _{PLS1}

Matlab code snippet

```
X = load('xdata.txt');
y = load('ydata.txt');
[U S V] = SVD(X*X');
T = U * sqrt(S);
% cross-validation : recover the optimal
                                                       CV is much faster in
% number of Latent Variables (lv)
                                                      \rightarrow \mathbf{T}_{(n, k)} than in \mathbf{X}_{(n, m)} as
[press lv] = pls1cv(T, y);
                                                        m >> k
% optional - if one needs to look at the
% b coefficients in the original space
lvopt = find(y == min(y));
                                                       To recover the b
                                                       vector in the original
[bpct b0pct] = pls1(T, Y, lvopt);
                                                        space using the
bpls1 = V * bpct';
                                                       optimal number of LVs
```

Dataset with 450702 variables

b vectors relationship

Memory allocation profile

(the **b** vectors are the same for both approaches)

_ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

:: Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:: Outer-Product PCT-PCA

Let:

$$\mathbf{X}_{(n, m)} = \mathbf{T}_{X(n, k)} \mathbf{P}^{T}_{X(k, m)}$$

$$\begin{aligned} & \boldsymbol{X}_{(n, \, m)} = [\, \boldsymbol{X}_{1(n, m1)} | \, \boldsymbol{X}_{2(n, m2)} | \, \, \dots \, | \, \boldsymbol{X}_{q(n, mq)}] \, = \\ & = [\, \boldsymbol{T}_{1(n, k1)} \boldsymbol{P}^\mathsf{T}_{1(k1, m1)} | \, \boldsymbol{T}_{2(n, k2)} \, \, \boldsymbol{P}^\mathsf{T}_{2(k2, m2)} | \, \dots | \, \boldsymbol{T}_{q(n, kq)} \boldsymbol{P}^\mathsf{T}_{q(kq, mq)}] \end{aligned}$$

where
$$m1 + m2 + ... + mq = m$$

Concatenating the T_q matrices:

$$\mathbf{Q}_{(n, k1+k2+...+kq)} = [\mathbf{T}_{1(n,k1)}|\mathbf{T}_{2(n,k2)}|...|\mathbf{T}_{q(n,kq)}]$$

Q can be decomposed as:

$$\mathbf{Q}_{(n, k1+k2+...+kq)} = \mathbf{T}_{PCT(n,h)} \mathbf{P}^{T}_{PCT(h, k1+k2+...+kq)}$$

or

$$\boldsymbol{Q}_{(n,\;k1+k2+\ldots+kq)} = \boldsymbol{T}_{PCT(n,h)} \left[\right. \boldsymbol{P}^{T}_{PCT1(h,\;k1)} | \left. \boldsymbol{P}^{T}_{PCT2(h,\;k2)} \right| \ldots \left. | \right. \boldsymbol{P}^{T}_{PCTq(h,\;kq)} \right]$$

Segmented PCT-PLS1

$$\mathbf{Q}_{(n, k1+k2+...+kq)} = \mathbf{T}_{PCT(n,h)} \mathbf{P}^{T}_{PCT(h, k1+k2+...+kq)}$$

PCT-PLS1:

$$\mathbf{y}_{(n,1)} = \mathbf{T}_{PCT(n,h)} \mathbf{b}_{PCT(h,1)} + \mathbf{f}_{(n,1)}$$

- assess model dimensionality
- explore scores, etc.

However...

How to reconstruct the **b**_{PLS} vector?

▶ Following the PCT-PLS one knows that:

$$\mathbf{b}_{PLS(m,1)} = \mathbf{P}_{X(m,h)} \mathbf{b}_{PCT(h,1)}$$

but P_X can be very wide...

Segmented PCT-PLS1

From:

$$\begin{aligned} & \mathbf{Q}_{(n, \, k1+k2+...+kq)} = \mathbf{T}_{PCT(n,h)} \left[\begin{array}{c} \mathbf{P}^{T}_{PCT1(h, \, k1)} \, | \, \mathbf{P}^{T}_{PCT2(h, \, k2)} \, | \, \ldots \, | \, \mathbf{P}^{T}_{PCTq(h, \, kq)} \right] \\ & \text{and} \\ & \mathbf{X}_{(n, \, m)} = \left[\mathbf{T}_{1(n,k1)} \mathbf{P}^{T}_{1(k1,m1)} | \mathbf{T}_{2(n,k2)} \, \, \mathbf{P}^{T}_{2(k2,m2)} | \ldots | \mathbf{T}_{q(n,kq)} \mathbf{P}^{T}_{q(kq,mq)} \right] \\ & \text{and} \\ & \mathbf{y}_{(n,1)} = \mathbf{T}_{PCT(n,h)} \, \mathbf{b}_{PCT(h,1)} + \mathbf{f}_{(n,1)} \end{aligned}$$

One can shows that:

$$\begin{aligned} & \mathbf{b}_{PLS1(m1,1)} = \mathbf{P}_{1(m1,k1)} \mathbf{P}_{PCT1(k1,h)} \mathbf{b}_{PCT(h,1)} \\ & \mathbf{b}_{PLS2(m2,1)} = \mathbf{P}_{2(m2,k2)} \mathbf{P}_{PCT2(k2,h)} \mathbf{b}_{PCT(h,1)} \\ & ... \\ & \mathbf{b}_{PLSq(mq,1)} = \mathbf{P}_{q(mq,kq)} \mathbf{P}_{PCTq(kq,h)} \mathbf{b}_{PCT(h,1)} \\ & \mathbf{b}_{PLS(m,1)} = [\mathbf{b}_{PLS1(m1,1)} | \mathbf{b}_{PLS2(m2,1)} | ... | \mathbf{b}_{PLSq(mq,1)}] \end{aligned}$$

- concatenation by rows

Segmented PCT-PLS1

1. To increase the performance of SegPCT: instead of

$$\mathbf{X}_{(n, m)} = [\mathbf{X}_{1(n,m1)} | \mathbf{X}_{2(n,m2)} | \dots | \mathbf{X}_{q(n,mq)}]$$

one can use the kernel **XX**^T approach for each segment:

$$[\ \mathbf{X}_1\mathbf{X}^\mathsf{T}_1 | \ \mathbf{X}_2\mathbf{X}^\mathsf{T}_2 \ | \ ... | \ \mathbf{X}_q\mathbf{X}^\mathsf{T}_q]$$

to recover the scores and the loadings.

2. The scores and loadings in the original-variable space are reconstructed independently

as such:

to assess the model dimensionality the loadings in the original-variable space does not have to be reconstructed.

Matrix size	PCT-PLS1			SegPCT-PLS1			
	Time (s)	Memory* (Mbytes)	Time (s)	Memory* (Mbytes)	Segment size		
[100, 100000]	49	39 (65)	106	7.6 (15.4)	1000		
[100, 250000]	132	98 (99)	194	5.4 (15.4)	2500		
[100, 500000]	298	195 (197)	302	6.3 (15.4)	5000		
[100, 750000]	891	221 (292)	413	7.3 (15.4)	7500		
[100, 1000000]	2185	220 (391)	518	8.4 (15.4)	10000		

^(*) Memory values of the working set of the algorithms (usage of the main memory to perform the calculations)

- → For very wide matrices SegPCT-PLS1 is more efficient (speed and memory) than PCT-PLS1.
- → For moderated wide matrices the PCT-PLS1 should be used instead of SegPCT-PLS1.

Values between parentheses are due to the amount of allocated virtual memory.

_ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

:: Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:: Outer-Product PCT-PCA

The motivation

- **_ 2DCOS** is spectral technique for evaluating 2-way datasets obtained when a sample is subject to an external sequential perturbation
- **__ 2DCOS** detects in-phase (synchronous) and out-of-phase (asynchronous) correlations between spectral intensity variations
- **_ 2DCOS** emphasises or detect important variations that cannot be detect in the 1D spectrum.

The synchronous spectrum:

$$\Phi_{(v1, v2)}$$

:: represents the similarity between two, v1 and v2, separated spectral intensity variations as a function of the perturbation

The Asynchronous spectrum:

$$\Psi_{(v1,\;v2)}$$

:: describes the dissimilarity between two, v1 and v2, separated spectral intensity variations as a function of the perturbation

$$\mathbf{\Phi}_{(\mathsf{m},\;\mathsf{m})} = \mathbf{X}^\mathsf{T}_{(\mathsf{m},\;\mathsf{n})} \; \mathbf{X}_{(\mathsf{n},\;\mathsf{m})}$$

$$\boldsymbol{\Psi}_{(m,\;m)} = \boldsymbol{X}^{T}_{(m,\;n)}\;\boldsymbol{H}_{(n,\;n)}\;\boldsymbol{X}_{(n,\;m)}$$

H: Hilbert-Noda transform matrix

$$\mathbf{H}_{jk} = \begin{cases} 0 & \text{if } j = k \\ 1/\pi (k - j) & \text{otherwise} \end{cases}$$

The PCT approach for the synchronous spectrum

$$\mathbf{\Phi}_{(\mathsf{m},\;\mathsf{m})} = \mathbf{X}^\mathsf{T}_{(\mathsf{m},\;\mathsf{n})} \; \mathbf{X}_{(\mathsf{n},\;\mathsf{m})}$$

:: decomposition of X as $X = TP^T$

$$\mathbf{\Phi}_{(m, m)} = \mathbf{P}_{(m, k)} \mathbf{T}_{(k, n)}^{\mathsf{T}} \mathbf{T}_{(n, k)} \mathbf{P}_{(k, m)}^{\mathsf{T}}$$

:: pre-multiplying by P^T and post-multiplying by P and as $P^TP = I$ then:

$$\boldsymbol{P}^{\mathsf{T}}_{(k,\;m)}\;\boldsymbol{\Phi}_{(m,\;m)}\;\boldsymbol{P}_{(m,\;k)}=\boldsymbol{T}^{\mathsf{T}}_{(k,\;n)}\;\boldsymbol{T}_{(n,\;k)}$$

:: or

 $\Phi_{PCT(m, m)} = \mathbf{T}^{T}_{(k, n)} \mathbf{T}_{(n, k)} \rightarrow \text{one could perform 2DCOS on the scores}$

 $\Phi_{(m, m)} = \mathbf{P}_{(m, k)} \; \Phi_{PCT(m, m)} \; \mathbf{P}^{T}_{(k, m)} \; \rightarrow \; 2DCOS \; in \; the \; original \; space$

The PCT approach for the asynchronous spectrum

$$\Psi_{(m, m)} = \mathbf{X}^{T}_{(m, n)} \mathbf{H}_{(n, n)} \mathbf{X}_{(n, m)}$$

:: decomposition of X as $X = TP^T$

$$\boldsymbol{\Psi}_{(m, m)} = \boldsymbol{P}_{(m, k)} \boldsymbol{T}^{T}_{(k, n)} \boldsymbol{H}_{(n, n)} \boldsymbol{T}_{(n, k)} \boldsymbol{P}^{T}_{(k, m)}$$

:: pre-multiplying by P^T and post-multiplying by P and as $P^TP = I$ then:

$$\boldsymbol{P}^{T}_{(k, m)} \; \boldsymbol{\Phi}_{(m, m)} \; \boldsymbol{P}_{(m, k)} = \boldsymbol{T}^{T}_{(k, n)} \; \boldsymbol{H}_{(n, n)} \; \boldsymbol{T}_{(n, k)}$$

:: or

 $\Psi_{PCT(m, m)} = \mathbf{T}^{T}_{(k, n)} \mathbf{H}_{(n, n)} \mathbf{T}_{(n, k)} \rightarrow \text{one could perform 2DCOS on the scores}$

 $\Psi_{(m, m)} = \mathbf{P}_{(m, k)} \Psi_{PCT(m, m)} \mathbf{P}_{(k, m)}^T \rightarrow 2DCOS$ in the original space

Simulated dataset

:: band 17 decreases at a given rate

:: bands 53 and 83 increases at different rates

2DCOS

2DCOS

Relationship between synchronous spectra of PCT-2DCOS and PCA-2DCOS

Relationship between synchronous spectra of PCT-2DCOS and PCA-2DCOS

:: PCT-2DCOS allows to build in an interactive way the 2DCOS spectra

For the Asynchronous spectrum:

_ PCT framework will be shown in:

:: Partial Least Squares regression (PCT-PLS1)

:: Segmented PCT-PLS1

:: Two-Dimensional Correlation Spectroscopy (PCT-2DCOS)

:: Outer-Product PCT-PCA

:: The method joins the signals acquired in two different domains by the means of Cartesian product combination between all the variables (points) of both signals.

:: The obtained supra-matrix (\mathbf{K}) is calculated from the original signal matrices which contains all the information provided by both independent domains.

where:

n: number of samples

m: number of variables of domain Xp: number of variables of domain Y

 Θ : Outer-Product operator

- :: This technique can produce very wide datasets, which can be very difficult to analyse due to computer resource constraints.
- :: Therefore, instead of working in the original-variable space (\mathbf{K}) one can work in the compressed PC-space (PCT).
 - one does not need to calculate the **K** explicitly

PCA decomposition of both domains:

$$\mathbf{X}_{(n, m)} = \mathbf{T}_{X(n, kX)} \mathbf{P}^{T}_{X(kX, m)}$$

$$\mathbf{Y}_{(n, p)} = \mathbf{T}_{Y(n, kY)} \mathbf{P}^{T}_{Y(kY, p)}$$

Outer Product of the Scores:

$$\mathbf{Q}_{(n, kX. KY)} = \mathbf{T}_{X(n, kX)} \Theta \mathbf{T}_{Y(n, kY)}$$

PCA decomposition of the **Q** matrix (PCT framework):

$$\mathbf{Q}_{(n, kX . kY)} = \mathbf{T}_{PCT(n, h)} \mathbf{P}^{T}_{PCT(h, kX . kY)}$$

Matrix \mathbf{Q} is much smaller than matrix \mathbf{K} as (kX . kY) << (m . p)

From the PCT properties it follows that:

 $\mathbf{T}_{PCT} = \mathbf{T}_{K}$: the PCT scores are equal to the scores of the original-variable space (**K**)

For each one of the h PCT-PCs the $\mathbf{P}_{PCT(kX . kY, h)}$ matrix is unfolded as:

$$\begin{array}{c} \mathbf{P}_{\text{PCT1(kX, kY)}} \leftarrow \mathbf{P}_{\text{PCT(kX . kY,1)}} \\ \mathbf{P}_{\text{PCT2(kX, kY)}} \leftarrow \mathbf{P}_{\text{PCT(kX . kY,2)}} \\ \dots \\ \mathbf{P}_{\text{PCTh(kX, kY)}} \leftarrow \mathbf{P}_{\text{PCT(kX . kY,h)}} \end{array}$$

to obtain the loadings in the original-variable space:

$$\begin{aligned} \mathbf{P}_{1(m, p)} &= \mathbf{P}_{X(m, kX)} \mathbf{P}_{PCT1(kX,kY)} \mathbf{P}_{Y(kY, p)}^{T} \\ \mathbf{P}_{2(m, p)} &= \mathbf{P}_{X(m, kX)} \mathbf{P}_{PCT2(kX,kY)} \mathbf{P}_{Y(kY, p)}^{T} \\ & \dots \\ \mathbf{P}_{h(m, p)} &= \mathbf{P}_{X(m, kX)} \mathbf{P}_{PCTh(kX,kY)} \mathbf{P}_{Y(kY, p)}^{T} \end{aligned}$$

 \mathbf{P}_1 , \mathbf{P}_2 , ..., \mathbf{P}_h are folded-back to:

$$\mathbf{P}_{1(m.p, 1)}$$
, $\mathbf{P}_{2(m.p, 2)}$, ..., $\mathbf{P}_{h(m.p, h)}$

and concatenated: $\mathbf{P} = [\mathbf{P}_1 \mid \mathbf{P}_2 \mid ... \mid \mathbf{P}_h]$

:: OP-PCA decomposition of a $\mathbf{K}_{(45,\ 490625)}$ matrix was compared to the PCT-OP-PCA decomposition of the $\mathbf{Q}_{(45,45*45)}$

Scores scatter plot between the PCs of OP-PCA and PCT-OP-PCA.

Loadings scatter plot between the PCs of OP-PCA and PCT-OP-PCA.

Eigenvalues profiles for OP-PCA and PCT-OP-PCA

- → OP-PCA took 324 s and 147 Mbytes.
- → PCT-OP-PCA took **196** s and around **1** Mbyte.
- → The scores, the loadings and the eigenvalues of both approaches are equal.

Conclusions

- The PCT framework seems to be very useful in several MVA contexts.
- The PCT injection into the MVA methods is straightforward.
- The PCT framework allows interactive approaches for modelling.
- The PCT is inherently parallel (for distributed computing)