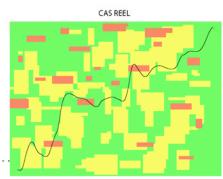
Traitement du signal et généralisation de la régression PLS pour la modélisation de spectres PIR

Thomas VERRON

28 novembre 2005

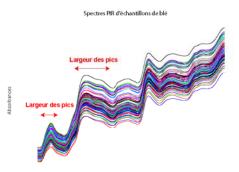
Répartition de l'information dans un spectre PIR


Prédiction du taux d'humidité de spectres PIR de blé Par SiROPLS

"Mieux comprendre la structure de l'information dans les spectres PIR pour mieux corriger les perturbations"

- La méthode SiROPLS
 - Répartition de l'information dans un spectre PIR

- Chimiques provenant du constituant recherché,
- Chimiques provenant de la matrice,
- Physiques provenant de la matrice physique : dispersion de la lumière, bruits.

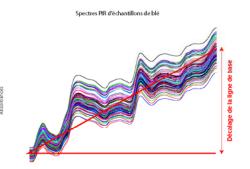

Longueurs d'onde

Les conséquences du mélange d'informations

Le mélange d'informations chimiques et physiques engendre :

X des chevauchements de pics,

Longueurs d'onde (1100 nm à 2500 nm : pas de mesur e 2nm)



Les conséquences du mélange d'informations

Le mélange d'informations chimiques et physiques engendre :

des chevauchements de pics,

🗶 un décalage de la ligne de base,

Longueurs d'onde (1100 nm à 2500 nm : pas de mesure 2nm)

Les conséquences du mélange d'informations

Le mélange d'informations chimiques et physiques engendre :

- X des chevauchements de pics,
- 🗶 un décalage de la ligne de base,
- des variations non spécifiques entre les spectres PIR.

Spectres PIR d'échantillons de blé

Forte variation inter spectres

Longueurs d'onde (1100 nm à 2500 nm : pas de mesure 2nm)

Le mélange d'informations chimiques et physiques engendre :

- 🔀 des chevauchements de pics,
- 🗡 un décalage de la ligne de base,
- des variations non spécifiques entre les spectres PIR.

Spectres complexes et embrouillés.

Les conséquences du mélange d'informations

Le mélange d'informations chimiques et physiques engendre :

- 🗶 des chevauchements de pics,
- 💢 un décalage de la ligne de base,
- des variations non spécifiques entre les spectres PIR.

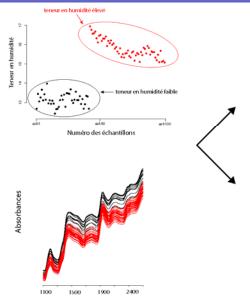
Spectres complexes et embrouillés.

Méthodes de correction

Les deux approches de prétraitements pour le PIR

Deux types d'approches

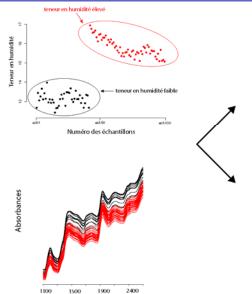
Les approches "Physiques"

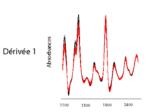

- Multiple Scatter Correction
- Standard Normal Variate
- Les dérivées

Les approches "Chimiques"

- Indirect : OSC de Wold...
- Direct : OSC de Fearn, DOSC...
- O-PLS

Les deux approches de prétraitements pour le PIR

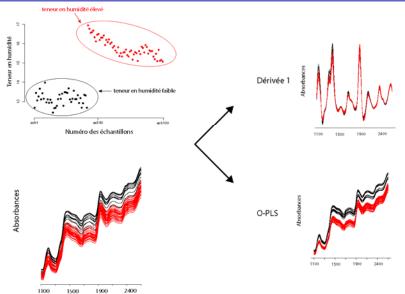

Les approches "Physiques"


- Multiple Scatter Correction
- Standard Normal Variate
- Les dérivées

Les approches "Chimiques"

- Indirect : OSC de Wold...
- Direct : OSC de Fearn, DOSC...
- O-PLS

Les deux approches de prétraitements pour le PIR



Les approches "Chimiques"

- Indirect : OSC de Wold...
- Direct : OSC de Fearn, DOSC...
- O-PLS

Les deux approches de prétraitements pour le PIR

- La méthode SiROPLS
 - Décomposer et reconstruire

Décomposer

Séparer les différentes sources d'informations pour mettre en évidence les caractéristiques du signal pertinentes et non évidentes dans les spectres.

Décomposer et reconstruire

Décomposer

Séparer les différentes sources d'informations pour mettre en évidence les caractéristiques du signal pertinentes et non évidentes dans les spectres.

Les transformées (décompositions)

Traitements du signal

Ondelettes

Transformées de Fourier

Décomposition polynomiale

Bsplines

Décomposer et reconstruire

Décomposer

Séparer les différentes sources d'informations pour mettre en évidence les caractéristiques du signal pertinentes et non évidentes dans les spectres.

Les transformées (décompositions) Des méthodes corrections Traitements du signal WILMA Seuillage de coefficient Ondelettes WOSC... Transformées de Fourier Débruitage Compression... Décomposition polynomiale Bsplines Compression Régression non linéaire...

Décomposer et reconstruire

Décomposer

Séparer les différentes sources d'informations pour mettre en évidence les caractéristiques du signal pertinentes et non évidentes dans les spectres.

Les transformées (décompositions)

Traitements du signal

Ondelettes

Transformées de Fourier

Décomposition polynomiale

Bsplines

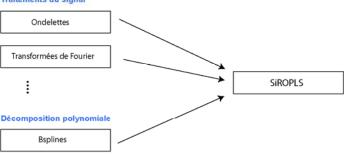
Reconstruire

Reconstruire des spectres ne contenant que l'information pertinente par rapport au problème d'optimisation.

Décomposer et reconstruire

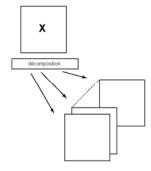
Décomposer

Séparer les différentes sources d'informations pour mettre en évidence les caractéristiques du signal pertinentes et non évidentes dans les spectres.

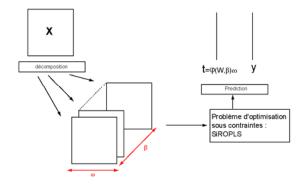

Reconstruire

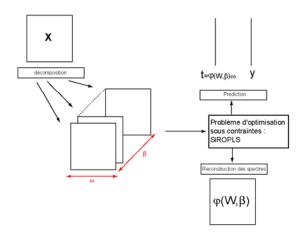
Notre Approche

Reconstruire des spectres ne contenant que l'information pertinente par rapport au problème d'optimisation.

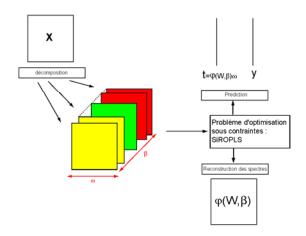

Les transformées (décompositions)

Traitements du signal

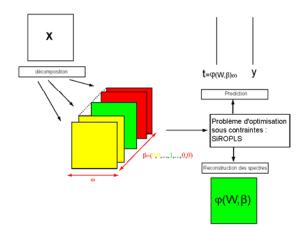



- La méthode SiROPLS
 - Décomposer et reconstruire

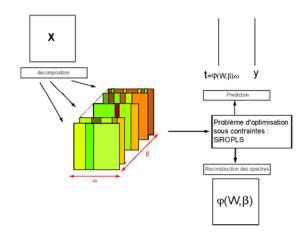
- La méthode SiROPLS
 - Décomposer et reconstruire



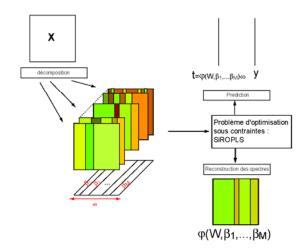
- La méthode SiROPLS
 - Décomposer et reconstruire


- La méthode SiROPLS
 - Décomposer et reconstruire

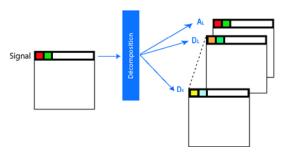
méthode SiROPLS : le cas idéal

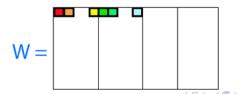

- La méthode SiROPLS
 - Décomposer et reconstruire

méthode SiROPLS : le cas idéal


- La méthode SiROPLS
 - Décomposer et reconstruire

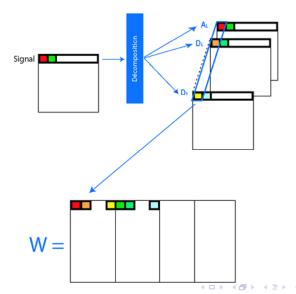
méthode SiROPLS : le cas réel


- La méthode SiROPLS
 - Décomposer et reconstruire

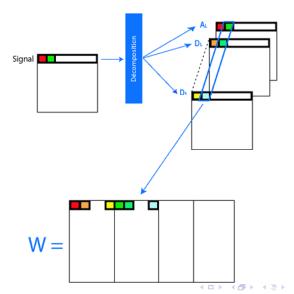

méthode SiROPLS : le cas réel

- Notations

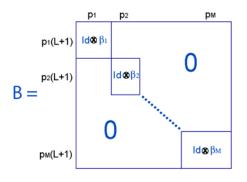
Construction de la matrice W



- Notations


Construction de la matrice W

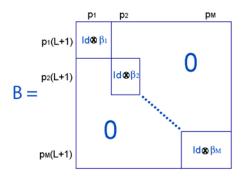
- Notations


Construction de la matrice W

Notations

La matrice B contenant les vecteurs β

$$\bullet \ \sum_{j=1}^M p_j = p$$


•
$$\varphi(W, \beta_1, \dots, \beta_M) = WB$$

• Si
$$M = 1 \implies WB = W(Id \otimes \beta_1)$$

• Si
$$\beta_1=(1,\ldots,1)'$$
, ..., $\beta_M=(1,\ldots,1)'$ $WB=X$.

La matrice B contenant les vecteurs β

- $\sum_{j=1}^{M} p_j = p$
- $\varphi(W, \beta_1, \ldots, \beta_M) = WB$
- Si M = 1 $WB = W(Id \otimes \beta_1)$
- Si $\beta_1 = (1, ..., 1)', ..., \beta_M = (1, ..., 1)' \implies WB = X.$

Algorithme SiROPLS

Définition

A la k^{eme} étape, on cherche les vecteurs β_m^k et w_k qui maximisent :

$$cov(t_k, y^{(k)})_D = y^{(k)'}DWBQw_k$$

Sous les contraintes

•
$$||w_k||_Q^2 = 1$$

•
$$\|W_m(Id \otimes \beta_m^k)\|_D^2 = \|X_m^{(k-1)}\|_D^2$$
 $(m = 1, ..., M)$

•
$$t'_k Dt_i = 0$$
 $(i = 1, ..., k-1)$

Les propriétés

Propriétés de l'algorithme

Convergence

L'algorithme génère une série croissante et positive de la fonction objectif. La covariance entre la composante t et le vecteur y converge.

Modèle

Le modèle SiROPLS peut s'écrire en fonction des données initiales :

$$y = W\gamma$$
 avec $\gamma = r \frac{t'y^{k-1}}{t^Tt}$

r est obtenu en utilisant la transformation de Dayal et MacGregor, et vérifie : $t = P_{trans}^{\perp}$ WBw = Wr.

Propriétés de l'algorithme

Convergence

L'algorithme génère une série croissante et positive de la fonction objectif. La covariance entre la composante t et le vecteur y converge.

Modèle

Le modèle SiROPLS peut s'écrire en fonction des données initiales :

$$y = W\gamma$$
 avec $\gamma = r \frac{t'y^{k-1}}{t^Tt}$

r est obtenu en utilisant la transformation de Dayal et MacGregor, et vérifie : $t = P_{(t_1, \dots, t_{k-1})}^{\perp} WBw = Wr$.

Les paramètres contrôler par l'utilisateur

- Choix de la décomposition (la transformation et ses paramètres).
- Choix du nombre de niveaux de la décomposition.
- Découpage : nombre et longueur des intervalles pour les β .

Application : Données et paramètres

Application : Jeu de données : 100 spectres PIR de blé (données de Kalivas)

ondelettes

- Extension du signal : lissage.
- Famille d'ondelette Daubechies : db8
- Nombre de niveaux de décomposition : 8
- Découpage : fac.tol= 0.55

Transformées de Fourier

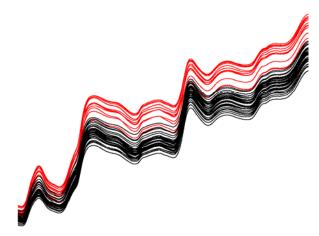
- Nombre de niveaux de décomposition : 8
- Découpage : fac.tol= 0.65

B-splines

- degré : 3
- nombre noeuds: 12
- Nombre de niveaux de décomposition : 8
- Découpage : fac.tol= 0.7

Application : Données et paramètres

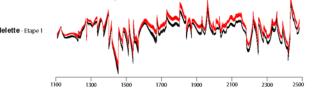
méthodes	RMSEPm	nb comp	méthodes	RMSEPm	nb comp
PCR	0.273	4	Poly-PCR	0.282	3
PCR_TLS	0.296	4	Spline-PLS	0.366	4
PCRS	0.282	3	KNN	1.205	-
PCRS TLS	0.305	3	LWR (K-50)	0.271	4
PLS	0.271	4	WILMA MLR V db8	0.226	-
Stepwise MLR1 and 5 GA	0.269	5	WILMA MLR R db4	0.240	-
GA-FT	0.272	4	WILMA MLR C coif5	0.235	-
UVE-PCR	0.276	4	WILMA MLR V db9	0.225	-
UVE-PCRS	0.275	3	WILMA PLS R db7	0.238	3
UVE-PLS	0.271	4	WILMA PLS R db1	0.234	3
RCE-PLS	0.288	4	WILMA PLS R sym4	0.245	3
NL-PCR	0.284	6	WILMA PLS C db9	0.250	3
NL-PCRS	0.306	5	Siroples ondelettes	0.222	3
NL-UVE-PCR	0.272	4	Siropls TF	0.240	3
NL-UVE-PCRS	0.271	3	Siroples splines	0.227	3

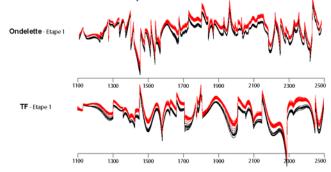

Application : Données et paramètres

méthodes	RMSEPm	nb comp	méthodes	RMSEPm	nb comp
PCR	0.273	4	Poly-PCR	0.282	3
PCR_TLS	0.296	4	Spline-PLS	0.366	4
PCRS	0.282	3	KNN	1.205	-
PCRS TLS	0.305	3	LWR (K=50)	0.271	4
PLS	0.271	4	WILMA MLR V db8	0.226	-
Stepwise MLR1 and 5 GA	0.269	5	WILMA MLR R db4	0.240	-
GA-FT	0.272	4	WILMA MLR C coif5	0.235	-
UVE-PCR	0.276	4	WILMA MLR V db9	0.225	-
UVE-PCRS	0.275	3	WILMA PLS R db7	0.238	3
UVE-PLS	0.271	4	WILMA PLS R db1	0.234	3
RCE-PLS	0.288	4	WILMA PLS R sym4	0.245	3
NL-PCR	0.284	6	WILMA PLS C db9	0.250	3
NL-PCRS	0.306	5	SiROPLS ondelettes	0.222	3
NL-UVE-PCR	0.272	4	Siropls TF	0.240	3
NL-UVE-PCRS	0.271	3	Siroples splines	0.227	3

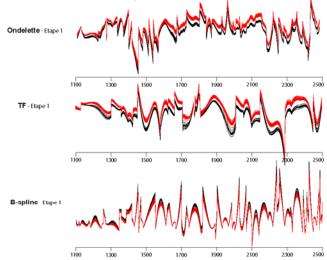
Les spectres bruts

Spectres PIR de blé


Absorbances


Les spectres corrigés par SiROPLS

Reconstruction des spectres


Les spectres corrigés par SiROPLS

Reconstruction des spectres

Les spectres corrigés par SiROPLS

Reconstruction des spectres

Conclusions et perspectives

Conclusions

Avantages:

- Une méthode de reconstruction générale.
- Une correction auto-adaptative incluse dans le critère de modélisation.
- Amélioration de la prédiction.
- Diminution du nombre de composantes du modèle optimal.
- Peu de paramètres à fixer.
- Possibilité de visualiser les spectres corrigés.

nconvénients :

- Temps de calcul important.
- Choix de paramètres délicats.

- La méthode SiROPLS
 - Conclusions et perspectives

Conclusions

Avantages:

- Une méthode de reconstruction générale.
- Une correction auto-adaptative incluse dans le critère de modélisation.
- Amélioration de la prédiction.
- Diminution du nombre de composantes du modèle optimal.
- Peu de paramètres à fixer.
- Possibilité de visualiser les spectres corrigés.

Inconvénients :

- Temps de calcul important.
- Choix de paramètres délicats.