

# Comparaison de 6 spectromètres portatifs ou miniatures pour prédire la qualité de pêches et nectarines

Sébastien LUROL – CTIFL

Gilles CHAIX – CIRAD/ UMR AGAP

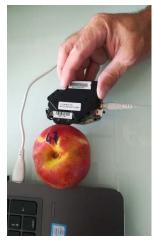
Abdallah ZGOUZ – HELIOSPIR

Alexis RONJON - CTIFL



9 novembre 2018 - Montpellier




# Les spectromètres SPIR comparés



MicroNIR 1700 Viavi (900 – 1700 nm)



F750 - Felix Instruments (350 - 1150 nm)



DLP® NIRscan<sup>TM</sup> Nano EVM **Texas Instrument** (900 - 1700 nm)



**NIR-Case Sacmi** (350 - 1150 nm)



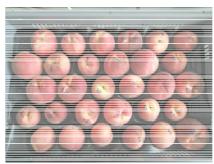
**SCIO Consumer Physics** (740 - 1070 nm)



**ASD Labspec 4** (350 – 2500 nm) <sub>2</sub>



# Les spectromètres comparés




18 cm

SCIO MicroNIR1700 NIR SCAN F750



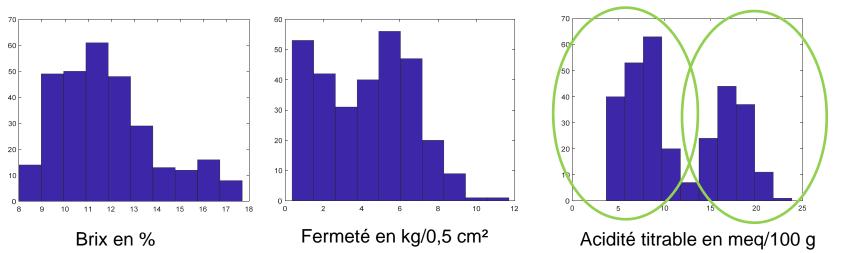
# Protocole: 30 juillet 2018







- 3 lots de pêches et nectarines hétérogènes en maturité
  - 60 nectarines blanches de la variété Nectarlove (cov)
  - 60 nectarines jaunes de la variété Moncrest (cov)
  - 30 pêches blanches de la variété Sweetbella (cov)
- > 1 mesure avec chaque spectromètre sur deux faces des fruits
- Mesures de référence sur chaque face de fruit
  - Fermeté (kg/0,5 cm²)
  - Indice réfractométrique (% Brix)
  - Acidité titrable (meq/100g de jus)
  - = 300 spectres et 300 mesures de référence

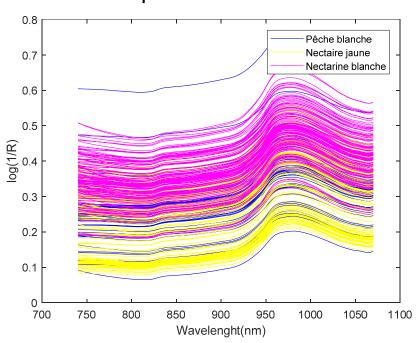



# Présentation des données

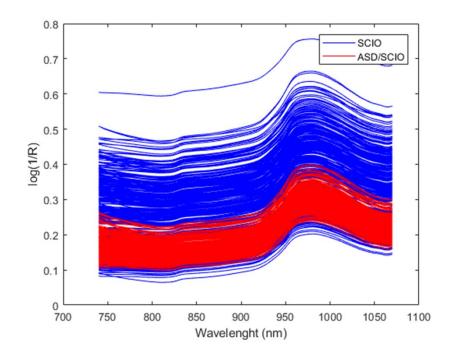
Description des mesures de références sur les 300 fruits



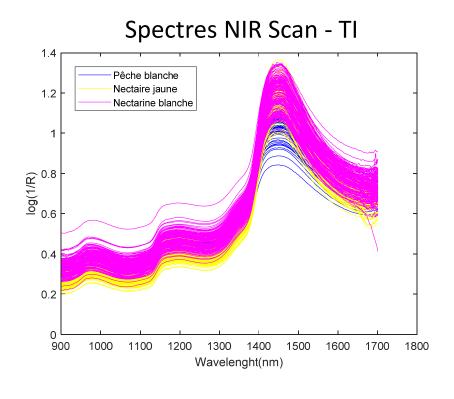




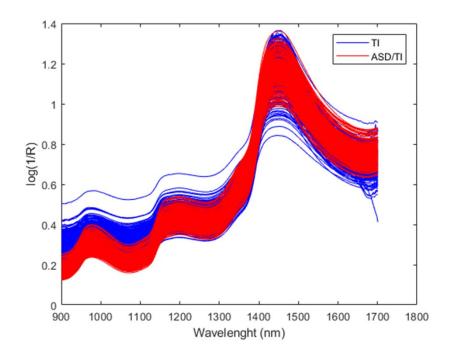

|         | Unité                  | Min  | Max   | Mean  | SD   |
|---------|------------------------|------|-------|-------|------|
| Brix    | %                      | 8.00 | 17.70 | 11.82 | 2.13 |
| Fermeté | kg/0,5 cm <sup>2</sup> | 0.36 | 11.70 | 4.22  | 2.41 |
| Acidité | meq/100 g de jus       | 3.66 | 23.83 | 11.43 | 5.17 |




#### Spectres SCIO: 740 – 1070 nm



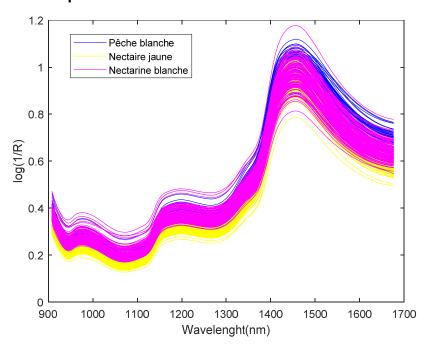




# Spectres SCIO et ASD sur la gamme spectrale SCIO

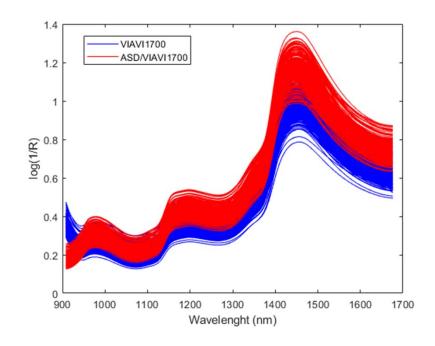


### Spectres NIR Scan Texas Instruments (TI): 900 – 1708 nm




# Spectres NIR Scan TI et ASD sur la gamme spectrale NIR Scan

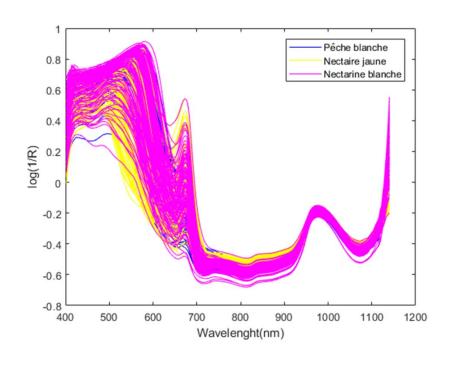




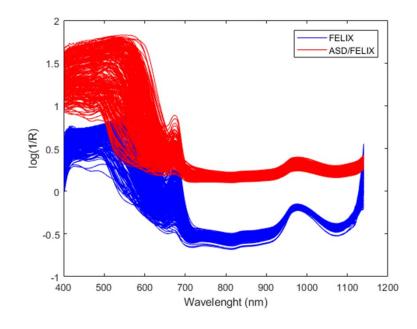

#### Spectres MicroNIR 1700 VIAVI: 908-1676 nm

#### Spectres MicroNIR 1700 - VIAVI




# Spectres MicroNIR et ASD sur la gamme spectrale MicroNIR






#### Spectres F750 Felix Instruments: 400-1140 nm

#### Spectres F750 – Felix Instruments



Spectres F750 et ASD sur la gamme spectrale F750



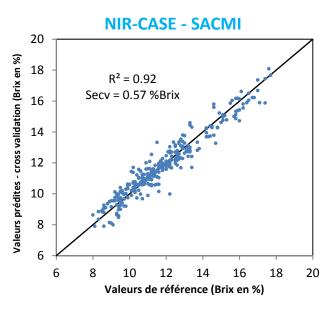


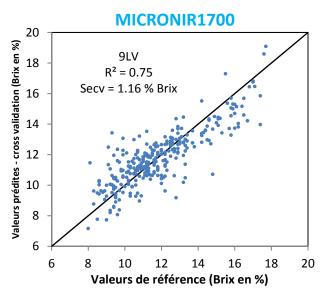
Spectres F750 – Felix Instruments normalisés

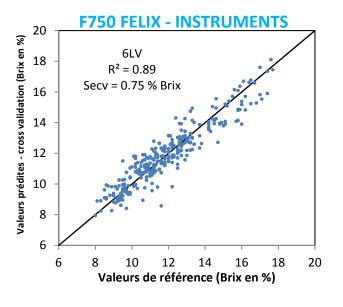


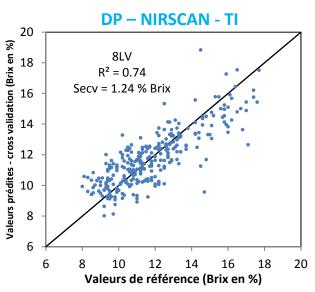
#### Résultats pour le BRIX

Brix - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB) Régression PLS (logiciels Matlab et ChemFlow)


|                      | • • • • • • • • • • • • • • • • • • • • | •             |    |        | •                            |       |                                                                             |
|----------------------|-----------------------------------------|---------------|----|--------|------------------------------|-------|-----------------------------------------------------------------------------|
| Duise                |                                         |               |    | RMSECV | R <sup>2</sup> <sub>cv</sub> | RPDcv |                                                                             |
| Brix                 | Gamme longueurs d'onde                  | Prétraitement | LV | %      |                              |       |                                                                             |
| F750 – FELIX         | 360 – 1140 nm                           | snv           | 11 | 1.59   | 0.57                         | 1.3   |                                                                             |
| ASD/FELIX            | 360 – 1140 nm                           | snv           | 11 | 1.63   | 0.55                         | 1.3   |                                                                             |
| F750 - FELIX (selec) | 729 – 975 nm                            | d2            | 6  | 0.75   | 0.89                         | 2.8   | = logiciel constructeur                                                     |
| ASD/FELIX (selec)    | 729 – 975 nm                            | d2            | 8  | 0.81   | 0.89                         | 2.6   | ]                                                                           |
| SCIO                 | 740 – 1070 nm                           | snv           | 8  | 1.23   | 0.72                         | 1.7   | Pas                                                                         |
| ASD/SCIO             | 740 – 1070 nm                           | snv           | 10 | 0.77   | 0.90                         | 2.8   | d'amélioration                                                              |
| TI                   | 900 – 1708 nm                           | snv           | 8  | 1.24   | 0.74                         | 1.7   | après réduction<br>- de la gamme de                                         |
| ASD/TI               | 900 – 1708 nm                           | snv           | 8  | 0.86   | 0.86                         | 2.5   | longueurs d'onde                                                            |
| MicroNIR1700 - VIAVI | 908 – 1676 nm                           | snvd2         | 9  | 1.16   | 0.75                         | 1.8   |                                                                             |
| ASD/MicroNIR1700     | 908 – 1676 nm                           | snv           | 9  | 0.91   | 0.85                         | 2.3   |                                                                             |
|                      |                                         |               |    |        |                              |       |                                                                             |
| NIR CASE             | 350 – 1150 nm                           | ?             | ?  | 0.57   | 0.92                         | 3.7   |                                                                             |
|                      |                                         |               |    | ?      |                              |       | logiciel constructeur Boite noire Pas de récupération possible des spectres |


 $\triangle$ 

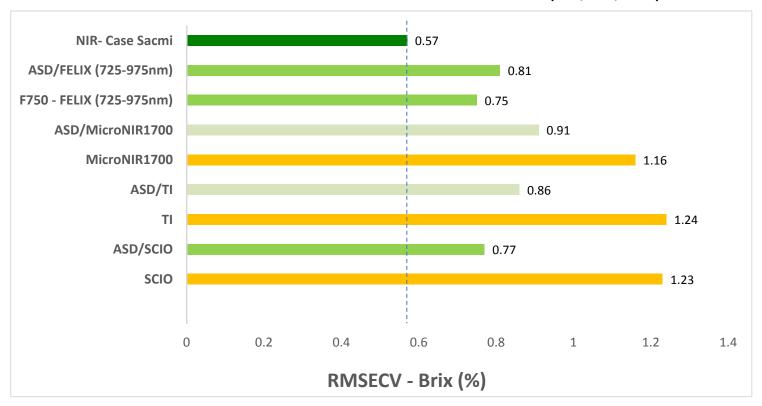

Résultats certainement perfectibles avec sélection de longueurs d'onde plus précise




#### Résultats pour le BRIX












## Résultats pour le BRIX

Brix - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB)



Dans les conditions de cet essai et <u>traitements réalisés pour le BRIX</u> :

NIR Case > F750 Felix / ASD > MicroNIR / TI / SCIO

Gamme de longueurs d'onde 700 – 1000 nm a priori plus intéressante pour le Brix

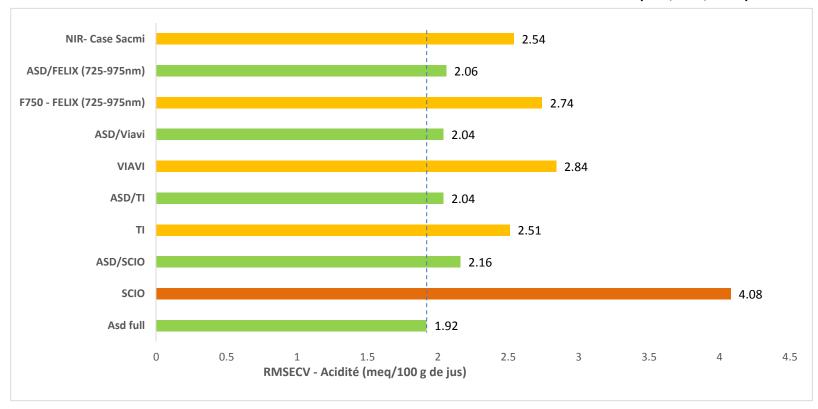


## Résultats pour l'acidité titrable

Acidité titrable - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB)
Régression PLS (logiciels Matlab et ChemFlow)

| ATT                  |                        |               |    | RMSECV   | R <sup>2</sup> <sub>cv</sub> | RPDcv |
|----------------------|------------------------|---------------|----|----------|------------------------------|-------|
| ATT                  | Gamme longueurs d'onde | Prétraitement | LV | Meq/100g |                              |       |
| F750 – FELIX         | 360 – 1140 nm          | d1            | 9  | 2.70     | 0.77                         | 1.9   |
| ASD/FELIX            | 360 – 1140 nm          | d1            | 7  | 2.43     | 0.81                         | 2.1   |
| F750 - FELIX (selec) | 729 – 975 nm           | d2            | 9  | 2.74     | 0.75                         | 1.9   |
| ASD/FELIX (selec)    | 729 – 975 nm           | d2            | 7  | 2.06     | 0.87                         | 2.5   |
| SCIO                 | 740 – 1070 nm          | snv           | 6  | 4.08     | 0.42                         | 1.3   |
| ASD/SCIO             | 740 – 1070 nm          | snvd2         | 7  | 2.16     | 0.89                         | 2.4   |
| ТІ                   | 900 – 1708 nm          | -log          | 7  | 2.51     | 0.80                         | 2.1   |
| ASD/TI               | 900 – 1708 nm          | snvd1         | 9  | 2.04     | 0.88                         | 2.5   |
| MicroNIR1700 - VIAVI | 908 – 1676 nm          | snvd1         | 7  | 2.84     | 0.74                         | 1.8   |
| ASD/MicroNIR1700     | 908 – 1676 nm          | snvd1         | 9  | 2.04     | 0.88                         | 2.5   |
| ASD full             | 350 – 2500 nm          | -             | 7  | 1.92     | 0.88                         | 2.7   |
|                      |                        |               |    |          |                              |       |
| NIR CASE             | 350 – 1150 nm          | ?             | ?  | 2.54     | 0.75                         | 2.0   |

= logiciel constructeur


?

logiciel constructeur
Boite noire
Pas de récupération
possible des spectres



## Résultats pour l'acidité titrable

Acidité titrable - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB)



Dans les conditions de cet essai et <u>traitements réalisés pour l'ATT</u> :

ASD > F750 Felix / MicroNIR / TI / NIR Case > SCIO

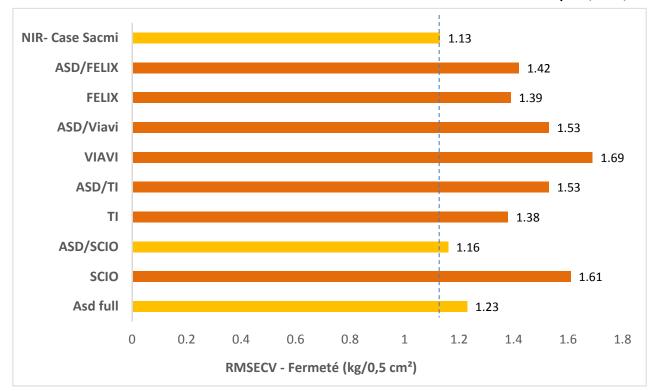


## Résultats pour la fermeté

Fermeté - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB) Régression PLS (logiciels Matlab et ChemFlow)

| Fower of 6           |                        |               |    | RMSECV                 | R <sup>2</sup> <sub>cv</sub> | RPDcv |
|----------------------|------------------------|---------------|----|------------------------|------------------------------|-------|
| Fermeté              | Gamme longueurs d'onde | Prétraitement | LV | Kg/0.5 cm <sup>2</sup> |                              |       |
| F750 – FELIX         | 360 – 1140 nm          | d1            | 8  | 1.57                   | 0.65                         | 1.5   |
| ASD/FELIX            | 360 – 1140 nm          | snvd2         | 8  | 1.48                   | 0.74                         | 1.6   |
| F750 - FELIX (selec) | 729 – 975 nm           | d1            | 7  | 1.39                   | 0.70                         | 1.7   |
| ASD/FELIX (selec)    | 729 – 975 nm           | d1            | 8  | 1.42                   | 0,70                         | 1.7   |
| SCIO                 | 740 – 1070 nm          | d1            | 5  | 1.61                   | 0.64                         | 1.5   |
| ASD/SCIO             | 740 – 1070 nm          | snvd2         | 7  | 1.16                   | 0.83                         | 2.1   |
| TI                   | 900 – 1708 nm          | -log          | 7  | 1.38                   | 0.71                         | 1.7   |
| ASD/TI               | 900 – 1708 nm          | snvd1         | 8  | 1.53                   | 0.65                         | 1.6   |
| MicroNIR1700 - VIAVI | 908 – 1676 nm          | -log          | 8  | 1.69                   | 0.55                         | 1.4   |
| ASD/MicroNIR1700     | 908 – 1676 nm          | snvd1         | 7  | 1.52                   | 0.64                         | 1.6   |
| ASD full             | 350 – 2500 nm          | -             |    | 1.23                   | 0.76                         | 2.0   |
| NIR CASE             | 350 – 1150 nm          | ?             | ?  | 1.13                   | 0.77                         | 2.1   |

logiciel Bo


logiciel constructeur
Boite noire
Pas de récupération
possible des spectres

Prédiction moyenne de ce descripteur



## Résultats pour la fermeté

Fermeté - Résultats en validation croisée sur les 300 fruits (PB, NJ, NB)



Dans les conditions de cet essai et <u>traitements réalisés pour la fermeté</u> :

NIR Case / ASD > TI / F750 Felix / SCIO / MicroNIR



#### Conclusions

- ➤ Première approche sur la comparaison de 5 spectromètres portatifs ou miniaturisés sur la base d'une manip sur 300 pêches et nectarines
- > Optimisation des traitements de données certainement possible (mise à disposition des données : Heliospir ?)
- > Robustesse des spectromètres non évaluée lors de cette manip
- > Sur la base de ces résultats, si un classement doit être fait, on retrouve :
  - les spectromètres de labo ou spécifiquement développés pour les fruits (ASD, NIR Case, F750 Felix Instruments)
  - les spectromètres miniaturisés Texas Instrument et MicroNIR 1700 VIAVI
  - le scanner SCIO, un peu en dessous
- > Autres critères à prendre en compte : portabilité, utilisation, prix, rapidité, d'utilisation....















# Merci pour votre attention

Pour plus de précisions :

lurol@ctifl.fr

CTIFL – Centre opérationnel de Saint-Rémy de Provence

Route de Mollégès – 13160 SAINT-RÉMY-DE-PROVENCE