

Comparaison des performances d'un spectromètre NIR miniaturisé et d'un appareil standard pour caractériser les teneurs en C et N du sol

Bernard Barthès¹, Ernest Kouakoua¹, Michaël Clairotte^{1,2,3}, Jordane Lallemand⁴, Lydie Chapuis-Lardy⁵, Michel Rabenarivo⁶, Sylvie Roussel⁴

¹IRD, UMR Eco&Sols, Montpellier, France **<bernard.barthes@ird.fr>**

² Inra, UMR Eco&Sols, Montpellier, France

³ adresse actuelle : European Commission Joint Research Centre, Ispra, Italie

⁴ Ondalys, Clapiers, France

⁵ IRD, UMR Eco&Sols, Dakar, Sénégal

⁶ Laboratoire des Radio-Isotopes, Université d'Antananarivo, Madagascar

Echantillons provenant de 8 sites

0 km

Site	Region	Climate	Soil type	Clay content	No of samples
LMARB Marololo Baiboho	Alaotra lake, northeast	mid-altitude tropical	Fluvisol	≈20%	78
LMART Marololo Tanety	Alaotra lake, northeast	mid-altitude tropical	Ferralsol	≈20%	54
AAND Andranomanelatra	Antsirabe, centre	highland tropical	Ferralsol	≈60%	48
AATS Antsapanimahazo	Antsirabe, centre	highland tropical	Ferralsol	≈35%	18
AIVO Ivory	Antsirabe, centre (midwest)	highland tropical	Ferralsol	≈30%	30
MADS Andasy	Manakara, southeast	sub- equatorial	Ferralsol	≈45%	60
TAVR Andranovory	Tulear, southwest	subarid	Cambisol	≈30%	36
TSAK Sakaraha	Tulear, southwest	subarid	Arenosol	≈10%	36

- Huit dispositifs expérimentaux installés par l'ONG Tafa avec l'appui du Cirad
- Représentatifs de la majorité des sols cultivés
- Minéralogie assez homogène
- Semis direct vs. labour (bêchage) + jachères Riz pluvial (maïs à Tuléar)
 - + (semis direct) couvert légumineuses ou graminées

360 échantillons prélevés au cylindre à 0-5 cm de profondeur

séchés à l'air éventuellement concassés puis tamisés à 2 mm et broyés à 0.2 mm

Dosage de C et N par combustion sèche à l'analyseur élémentaire CHN Carbo Erba NA 2000

Les forces en présence

	JDSU MicroNIR 2200	Foss NIRSystems 5000
Source	tungstène	halogène
Dispersion	filtre variable linéaire (techno JDSU)	réseau
Détection	InGasAs	PbS
Gamme et pas	1151-2186 nm, 8.15 nm	1100-2500 nm, 2 nm
Résolution	12.5 nm à 1000 nm, 25 nm à 2000 nm	5 nm
Référencement	externes, Spectralon (100%) et 'espace' (0%)	interne
Surface scan	8 mm²	42 mm²
Poids	0.06 kg	~ 20 kg
Prix	~ 7 k€ (2014)	~ 40 k€ (2003)

• Spectres bruts MicroNIR vs. Foss

Régression PLS avec WinISI4

Choix d'un jeu d'échantillons de validation indépendant

- Sept sites en calibration et un site bien représenté par les autres en validation
- Identification du site de validation : spectres de chaque site projetés dans l'ACP des 7 autres sites, à tour de rôle

	AAND	AATS	AIVO	LMARB	LMART	MADS	TAVR	TSAK	
Nb échantillons du site	48	18	30	78	54	60	36	36	
Nb éch du site bien représentés par les 7 autres sites (GH < 3 dans ACP Foss)	41	13	20	0	0	0	0	0	a 1

- Identification du site de validation : spectres de chaque site projetés dans l'ACP des 7 autres sites, à tour de rôle
- VAL : 41 éch AAND (> 10 km de AATS)

Spectro and			Calibr	ation		Validation						
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD _{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	.15 nm)										
≤ 16 LV	None001	16	7	3.2	0.92	3.5	9.2	6.8	6.3	0.53	0.64	1.4
≤ 16 LV	SNV1205	16	9	2.8	0.94	4.1	4.6	-2.5	3.9	0.87	0.82	2.3
Foss (1100-2	498 nm, 2 nm)											
≤16 LV	None001	16	15	1.9	0.97	6.0	3.4	0.0	3.4	0.84	0.88	2.6

Pour C, prédictions avec MicroNIR un peu moins précises qu'avec Foss mais à condition de prétraiter et corriger du biais

Spectro and	Pretreat-			Calibr	ation				١	/alidatio	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD _{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	3.15 nm)										
≤ 16 LV	None001	16	7	3.2	0.92	3.5	9.2	6.8	6.3	0.53	0.64	1.4
≤ 16 LV	SNV1205	16	9	2.8	0.94	4.1	4.6	-2.5	3.9	0.87	0.82	2.3
Foss (1100-2	498 nm, 2 nm))	-									
≤16 LV	None001	16	15	1.9	0.97	6.0	3.4	0.0	3.4	0.84	0.88	2.6
≤ 9 LV	None001	9	9	2.5	0.95	4.5	8.9	5.8	6.9	0.37	0.65	1.3
≤9LV	D144	9	9	2.3	0.96	4.9	4.4	0.0	4.4	0.72	0.82	2.0

Pour Foss avec 9 LV, avec ou sans prétraitement, mêmes résultats qu'avec MicroNIR

Spectro and	Pretreat-			Calibr	ation					١	/alidatio	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD_{cv}	SE	P	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	3.15 nm)											
≤ 16 LV	None001	16	7	3.2	0.92	3.5	9.	2	6.8	6.3	0.53	0.64	1.4
≤ 16 LV	SNV1205	16	9	2.8	0.94	4.1	4.	6	-2.5	3.9	0.87	0.82	2.3
Foss (1100-2	498 nm, 2 nm))											
≤16 LV	None001	16	15	1.9	0.97	6.0	3.	4	0.0	3.4	0.84	0.88	2.6
≤ 9 LV	None001	9	9	2.5	0.95	4.5	8.	9	5.8	6.9	0.37	0.65	1.3
≤ 9 LV	D144	9	9	2.3	0.96	4.9	4.	4	0.0	4.4	0.72	0.82	2.0
MicroNIR-ran	nged Foss 🕻 1	50-2182	nm, 2	2 nm)									
≤ 16 LV	None001	16	14	2.1	0.97	5.4	7.	8	4.3	6.6	0.44	0.67	1.4
≤ 16 LV	D001	16	14	2.0	0.97	5.8	4.	0	1.1	3.9	0.68	0.90	2.3
≤ 9 LV	None001	9	9	2.6	0.95	4.3	7.	3	4.3	6.0	0.44	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.5	0.95	4.4	4.	6	-1.9	4.2	0.75	0.83	2.1
MicroNIR-fitt	ed Foss (1150)-2182 nn	n, 8 r	<u>ושו</u>									
≤ 16 LV	None001	16	14	2.1	0.97	5.4	8.	1	4.7	6.7	0.50	0.58	1.3
≤ 16 LV	SNVD144	16	15	1.8	0.97	6.1	4.	6	0.6	4.6	0.90	0.74	1.9
≤ 9 LV	None001	9	9	2.5	0.95	4.6	7.	3	4.5	5.8	0.46	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.7	0.94	4.2	4.	4	-1.0	4.3	0.79	0.80	2.1

Spectro and	Pretreat-			Calibr	ation		_		١	alidatio/	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD_{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	.15 nm)										
≤ 16 LV	None001	16	7	3.2	0.92	3.5	9.2	6.8	6.3	0.53	0.64	1.4
≤ 16 LV	SNV1205	16	9	2.8	0.94	4.1	4.6	-2.5	3.9	0.87	0.82	2.3
Foss (1100-2	498 nm, 2 nm)											
≤16 LV	None001	16	15	1.9	0.97	6.0	3.4	0.0	3.4	0.84	0.88	2.6
≤ 9 LV	None001	9	9	2.5	0.95	4.5	8.9	5.8	6.9	0.37	0.65	1.3
≤ 9 LV	D144	9	9	2.3	0.96	4.9	4.4	0.0	4.4	0.72	0.82	2.0
MicroNIR-rar	ged Foss (11	50-2182	nm, 2	2 nm)								
≤ 16 LV	None001	16	14	2.1	0.97	5.4	7.8	4.3	6.6	0.44	0.67	1.4
≤ 16 LV	D001	16	14	2.0	0.97	5.8	4.0	1.1	3.9	0.68	0.90	2.3
≤ 9 LV	None001	9	9	2.6	0.95	4.3	7.3	4.3	6.0	0.44	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.5	0.95	4.4	4.6	-1.9	4.2	0.75	0.83	2.1
MicroNIR-fitt	ed Foss (1150	-2182 nn	n, 8 r	nm)								
≤ 16 LV	None001	16	14	2.1	0.97	5.4	8.1	4.7	6.7	0.50	0.58	1.3
≤ 16 LV	SNVD144	16	15	1.8	0.97	6.1	4.6	0.6	4.6	0.90	0.74	1.9
≤ 9 LV	None001	9	9	2.5	0.95	4.6	7.3	4.5	5.8	0.46	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.7	0.94	4.2	4.4	-1.0	4.3	0.79	0.80	2.1

Sans prétraitement, Foss sur même gamme que MicroNIR donne mêmes prédictions que MicroNIR

Spectro and	Pretreat-			Calibr	ation				١	/alidatio	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD_{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	.15 nm)										
≤ 16 LV	None001	16	7	3.2	0.92	3.5	9.2	6.8	6.3	0.53	0.64	1.4
≤ 16 LV	SNV1205	16	9	2.8	0.94	4.1	4.6	-2.5	3.9	0.87	0.82	2.3
Foss (1100-24	498 nm, 2 nm)											
≤16 LV	None001	16	15	1.9	0.97	6.0	3.4	0.0	3.4	0.84	0.88	2.6
≤ 9 LV	None001	9	9	2.5	0.95	4.5	8.9	5.8	6.9	0.37	0.65	1.3
≤ 9 LV	D144	9	9	2.3	0.96	4.9	4.4	0.0	4.4	0.72	0.82	2.0
MicroNIR-ran	ged Foss (11	50-2182	nm, 2	2 nm)								
≤ 16 LV	None001	16	14	2.1	0.97	5.4	7.8	4.3	6.6	0.44	0.67	1.4
≤ 16 LV	D001	16	14	2.0	0.97	5.8	4.0	1.1	3.9	0.68	0.90	2.3
≤ 9 LV	None001	9	9	2.6	0.95	4.3	7.3	4.3	6.0	0.44	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.5	0.95	4.4	4.6	-1.9	4.2	0.75	0.83	2.1
MicroNIR-fitte	ed Foss (1150)-2182 nn	n, 8 r	nm)								
≤ 16 LV	None001	16	14	2.1	0.97	5.4	8.1	4.7	6.7	0.50	0.58	1.3
≤ 16 LV	SNVD144	16	15	1.8	0.97	6.1	4.6	0.6	4.6	0.90	0.74	1.9
≤ 9 LV	None001	9	9	2.5	0.95	4.6	7.3	4.5	5.8	0.46	0.80	1.5
≤ 9 LV	SNVD001	9	9	2.7	0.94	4.2	4.4	-1.0	4.3	0.79	0.80	2.1

Avec prétraitement, Foss sur même gamme que MicroNIR donne mêmes prédictions que MicroNIR

Prédictions azote (moyenne et écart type en VAL : 3.10 ± 0.72 gN kg⁻¹)

Spectro and Pretreat-				Calibr	ation		Validation					
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD _{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	8.15 nm)										
≤ 16 LV	None001	16	7	0.23	0.90	3.2	0.72	0.44	0.58	0.47	0.48	1.2
≤ 16 LV	SNVD001	16	5	0.28	0.86	2.7	0.36	-0.09	0.36	0.87	0.77	2.0
Foss (1100-2	498 nm, 2 nm)	1										
≤16 LV	None001	16	15	0.17	0.95	4.4	0.35	-0.05	0.35	0.93	0.77	2.1

Pour N, prédictions avec MicroNIR à peine moins bonnes qu'avec Foss à condition de prétraiter (mais faible biais => ≠C)

Prédictions azote (moyenne et écart type en VAL : 3.10 ± 0.72 gN kg⁻¹)

Spectro and	Pretreat-			Calibr	ation				V	alidatio	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD _{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm,	8.15 nm)										
≤ 16 LV	None001	16	7	0.23	0.90	3.2	0.72	0.44	0.58	0.47	0.48	1.2
≤ 16 LV	SNVD001	16	5	0.28	0.86	2.7	0.36	-0.09	0.36	0.87	0.77	2.0
Foss (1100-2	498 nm, 2 nm])										
≤16 LV	Noné001	16	15	0.17	0.95	4.4	0.35	-0.05	0.35	0.93	0.77	2.1
≤5LV	None001	5	5	0.28	0.86	2.7	0.64	0.18	0.62	0.32	0.45	1.1
≤5LV	D144	5	5	0.23	0.90	3.2	0.50	0.11	0.50	0.50	0.69	1.4

Pour Foss avec 5 LV, avec ou sans prétraitement, moins bons résultats qu'avec MicroNIR

Prédictions azo	te (moyenne e	t écart type en V/	AL : 3.10 ± 0.72 gN kg ⁻¹)
-----------------	----------------------	--------------------	--------------------------------------	---

Spectro and	Pretreat-			Calibr	ation				V	alidatio	on	
conditions	ment	LVmax	LV	SECV	R^2_{cv}	RPD_{cv}	SEP	Bias	SEPc	Slope	R^2_{val}	RPD_{val}
MicroNIR (11	51-2186 nm, 8	8.15 nm)										
≤ 16 LV	None001	16	7	0.23	0.90	3.2	0.72	0.44	0.58	0.47	0.48	1.2
≤ 16 LV	SNVD001	16	5	0.28	0.86	2.7	0.36	-0.09	0.36	0.87	0.77	2.0
Foss (1100-2	2498 nm, 2 nm)										
≤16 LV	None001	16	15	0.17	0.95	4.4	0.35	-0.05	0.35	0.93	0.77	2.1
≤ 5 LV	None001	5	5	0.28	0.86	2.7	0.64	0.18	0.62	0.32	0.45	1.1
≤ 5 LV	D144	5	5	0.23	0.90	3.2	0.50	0.11	0.50	0.50	0.69	1.4
MicroNIR-rai	nged Foss (11	50-2182	nm, 2	2 nm)								
≤16 LV	None001	16	11	0.18	0.94	4.0	0.60	0.35	0.50	0.44	0.74	1.4
≤16 LV	SNVD001	16	14	0.17	0.95	4.3	0.45	0.11	0.44	0.57	0.75	1.6
≤ 5 LV	None001	5	5	0.26	0.88	2.9	0.68	0.38	0.57	0.24	0.86	1.2
≤ 5 LV	SNVD001	5	5	0.31	0.82	2.4	0.61	0.39	0.49	0.46	0.76	1.5
MicroNIR-fitt	ed Foss (115	0-2182 nn	n, 8 r	m)								
≤ 16 LV	None001	16	11	0.19	0.94	4.0	0.61	0.35	0.50	0.45	0.72	1.4
≤ 16 LV	SNVD144	16	12	0.15	0.96	4.9	0.39	0.00	0.39	0.79	0.73	1.8
≤ 5 LV	None001	5	5	0.26	0.88	2.8	0.68	0.38	0.57	0.24	0.86	1.2
≤ 5 LV	D144	5	5	0.26	0.87	2.8	0.70	0.46	0.54	0.42	0.67	1.3

Spectre Foss utilisé comme MicroNIR (gamme et pas) donne moins bonnes prédictions de N

С

N

Coefficients de régression pour C

Coefficients de régression pour N

- Même types de constituants pèsent dans prédiction de C et N
 - MicroNIR : composés aliphatiques, aromatiques et azotés (+), possiblement lignine (-)
 - Foss : lignine possiblement , oxydes Fe (+), et composés azotés, composés aromatiques, possiblement composés chlorés (-)

Conclusion

Pour les échantillons étudiés

- MicroNIR prédit N du sol aussi bien que Foss à condition de prétraiter les spectres
- MicroNIR prédit C du sol presque aussi bien que Foss à condition de prétraiter les spectres et corriger du biais