

KU LEUVEN

Optical characterization of the composition and scatterer size distributions of turbid liquids from Vis/NIR spectroscopy

W. Saeys, A. Postelmans, R. Watté, R. Van Beers, B. Aernouts Wouter.saeys@kuleuven.be

Overview

- Introduction
- From optical measurements to bulk optical properties
 Double integrating spheres

 - Spatially resolved spectroscopy
- From scattering spectra to particle size distribution
 - Shape dependent
 - Shape independent
 - Case study polystyrene particles
- Conclusions

Introduction

Light propagation in turbid media

Absorption

Scattering

Bulk scattering and absorption coefficient

- Bulk absorption coefficient μ_a
 - Probability of photon absorption per unit infinitesimal pathlength

- Bulk scattering coefficient μ_s
 - Probability of photon scattering per unit infinitesimal pathlength
 - Non-linear effect on light extinction

Anisotropy factor g

Particle << wavelength Anisotropy = 0 Isotrope scattering

Particle ≈ wavelength Anisotropy ≈ 0.6

Particle > wavelength Anisotropy $\rightarrow 1$

Optical properties and product characteristics

- Why interest in bulk optical properties?
 - → Related to emulsion/suspension characteristics

Research hypothesis

Bulk optical properties

From optical measurements to BOP

BOP from optical measurements

• Calculate BOP from multiple (uncorrelated) measurements

Reflectance & transmittance

- Double integrating spheres (DIS)
- Unscattered transmission (UT)

Multiple distances from light source

 Spatially resolved spectroscopy (SRS)

Inverse adding-doubling (IAD)

- Find optical properties that correspond to measured reflection and transmission
- 3 optical measurements
 - Diffuse reflection
 - Diffuse transmission
 - Unscattered transmission
- Iterative process

Inverse adding-doubling (IAD)

Aernouts et al., Opt. Express 21 (2013)

Aernouts et al., Opt. Express 21 (2013)

Spatially resolved spectroscopy (SRS)

- Detectors at multiple distances from light source
- Interaction history is function of distance d
 - Further from light source
 - Lower signal
 - More interaction with tissue

• Intensity profile R(d)

• Possible for dense samples without dilution

Estimate BOP from SRS data

- Forward light propagation model
 - \circ Adding-doubling \rightarrow no 2D information
 - $_{\circ}$ Diffusion approximation \rightarrow assumptions not valid
 - \circ Monte Carlo simulations \rightarrow computationally expensive
 - $_{\circ}$ \rightarrow Data-based metamodeling approach
 - Stochastic Kriging
 - Train on set of liquid phantoms covering wide range of BOP

Watté et al., Opt. Express 21 (2013)

KU LEU

Wavelength by wavelength

- Iterative optical properties estimation
 - Nelder-Mead optimizer for minimization
 - Cost function = sum of squared relative errors
 - No assumptions on scattering or absorption profiles used

Watté et al., Opt. Express 21 (2013)

Constrained optimization

- Include expert knowledge: μ_s ' as parametric function
 - Trade-off smoothness flexibility

 $\mu'_{s}(WL) = p_{1}.exp(p_{2}.WL) + p_{3} + p_{4}.WL + p_{5}.WL^{2} + p_{6}.WL^{3}$

- Minimising cost function over entire wavelength range
- Construction of 'information grid' to select best combination

Watté et al., Opt. Express (2016)

Particle size distribution estimation

From scattering spectra to PSD

Forward problem

Calculate optical properties for known PSD

MICROSCALE

Physical information

- Particle size distribution
- Volume fraction scatterers
- Refractive indices

Discretise PSD

MACROSCALE

Bulk optical properties

- Bulk absorption coefficient
- Bulk scattering coefficient
- Anisotropy factor

KU LEUV

Inverse estimation PSD

Shape dependent PSD estimation

- Assume probability density function
 - Monomodal: PSD = $logn(\mu_1, \sigma_1)$
 - Bimodal: PSD = scale . logn(μ_1, σ_1) + (1-scale) . logn(μ_2, σ_2)

Estimate parameter values and volume fraction

Minimize sum of relative least squared errors

- Robust against noise
- Limited flexibility

$$\min\sum_{i=1}^{N_{\lambda}} \left(\frac{\mu_{s,i} - \widehat{\mu_{s,i}}}{\mu_{s,i}}\right)^2$$

Shape independent PSD estimation

• Approximate PSD by weighted sum of splines

• Find B-spline weights

$$\mu_{s}(\lambda) = \int_{r_{min}}^{r_{max}} PSD(r) \cdot \sigma_{s}(r,\lambda) dr = \int_{r_{min}}^{r_{max}} \sum_{j=1}^{NB} w_{j} \cdot B_{j}(r) \cdot \sigma_{s}(r,\lambda) dr = \sum_{j=1}^{NB} w_{j} \cdot \mu_{s,j}(\lambda)$$

Calculate volume fraction from weights

Shape independent PSD estimation

- Tikhonov regularization
 - Non-negative least squares

Case study polystyrene particles

Results polystyrene Monomodal shape dependent

Results polystyrene Monomodal shape dependent

Results simulated fat in water Bimodal shape dependent bimodal

Results simulated fat in water Shape independent

Applications

- Link to product properties and quality attributes
 - Viscosity, creaming, mouth feeling/creaminess perception, nutrient uptake...
- Quality monitoring during production and storage

KU LEUV

Conclusions

- Accurate determination of bulk optical properties from
 - Reflectance & transmittance data
 - DIS + UT
 - Multiple reflectance measurements
 - SRS
- Use of BOP for characterizing emulsions/suspensions
 - Absorption: chemical composition
 - Scattering: PSD, volume fraction scatterers

Conclusions

- PSD estimation from Vis/NIR bulk scattering spectra
- Shape dependent method
 - Good estimation if correct choice of probability density function
- Shape independent method
 - Flexible, but more prone to artefacts
 - Good estimation if good regularization and choice Bspline basis

KU LEUV

 Opportunities for (on-line) optical determination of microphysical emulsion/suspension quality

Questions?

Contact: www.biophotonics.be Wouter.saeys@kuleuven.be

