La spectroscopie proche infrarouge sur la ligne de production dans l'industrie chimique

Dubuc Perrine ¹, Montagnier Safia ¹, Guilment Jean ¹ Lallemand Jordane ² et Roussel Sylvie ²

¹ ARKEMA - CERDATO / Laboratoire d'Étude des Matériaux (LEM) - Route du Rilsan, 27470 Serquigny – France - perrine.dubuc@arkema.com

² Ondalys - 4 rue Georges Besse, 34830 Clapiers, France - <u>jlallemand@ondalys.fr</u>

Trois pôles d'activités et 12 business units

Matériaux Haute Performance

Des solutions innovantes et à haute valeur ajoutée

- Polymères techniques
 (Polyamides de spécialités et Polymères fluorés)
- Adsorption/filtration (CECA)
 - Peroxydes organiques
- Adhésifs de spécialités (Bostik)

Spécialités Industrielles

Une présence mondiale sur des niches industrielles intégrées

- Thiochimie
 - Fluorés
- PMMA (Altuglas International)
 - Oxygénés

Coating Solutions

Des solutions pour les peintures décoratives, les revêtements industriels et applications acryliques en forte croissance

- Acryliques
- Résines de revêtements
- Résines photoréticulables (Sartomer)
- Additifs de rhéologie (Coatex)

Site de Serquigny en Normandie

Usine: Fabrication de polyamides de haute performance

Sa vocation:

Concevoir, synthétiser, formuler et transformer des polymères de haute performance en vue de leur commercialisation

CERDATO

Les missions:

- Mettre au point de nouveaux matériaux
 - Développer de nouvelles applications
 - Assurer une Assistance Technique mondiale
 - Améliorer nos procédés

Expéditions:

92% de la production est exportée

Des fondamentaux:

La sécurité

La relation clients

L'amélioration permanente (qualité ISO9001

Effectif:

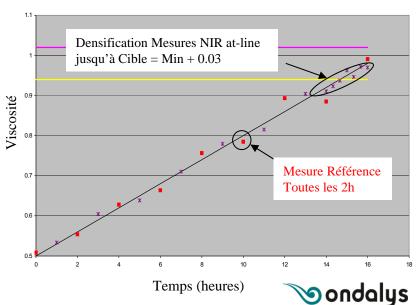
250 Employés

80 Cadres, dont 50 docteurs-ingénieurs

170 Techniciens et opérateurs (Bac Pro, DUT, BTS, licence professionnelle...)

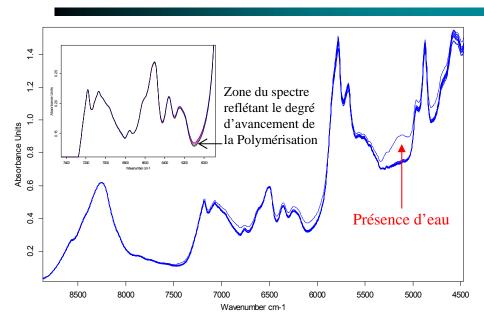
Sommaire

- Description du procédé
- Développement du NIR at-line
- Développement du NIR on-line
- → Problème de robustesse du modèle on-line
- Comparaison de solutions pour améliorer la robustesse des modèles on-line


Polymérisation en phase solide de poudres par spectroscopie Proche Infrarouge

Méthode de référence

- Mesure de viscosité en solution
- Écart-type moyen : 0.015
- Temps de mesure entre 1 et 2h
- → Développement d'une méthode NIR at-line

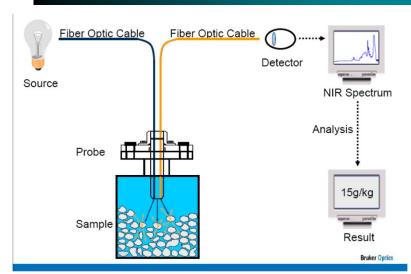

• Procédé:

- Polymérisation par voie solide
- Élimination d'eau dans une enceinte chauffée et sous vide
- Passage d'une visco de 0.5 à environ 1 (0.9 à 1.2)
- Spécifications en visco de 0.05 à 0.12

Suivi NIR at-line de la polymérisation

Sensibilité de la mesure NIR à :

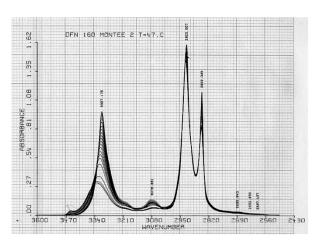
- La température de l'échantillon
 - → Etalonnage à température ambiante
 - → Attente d'environ 10 minutes avant toute mesure
- La teneur en eau
 - → Etalonnage sur produit sec
 - → Mesure directement à l'atelier

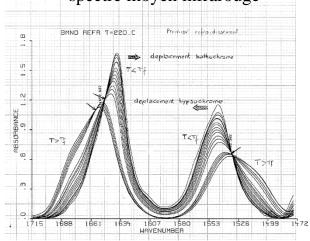

- © Le spectre NIR contient une information sur la longueur des chaînes polymères
- © Possibilité de corréler le NIR avec la visco $\eta = KM_{w}^{\alpha}$ avec $\alpha \sim 0.5$
- → Possibilité d'effectuer la mesure « at-line »
 - Temps de mesure de l'ordre de la minute
- Mesure sans contact à travers le flacon
- Mesure par les opérateurs de production

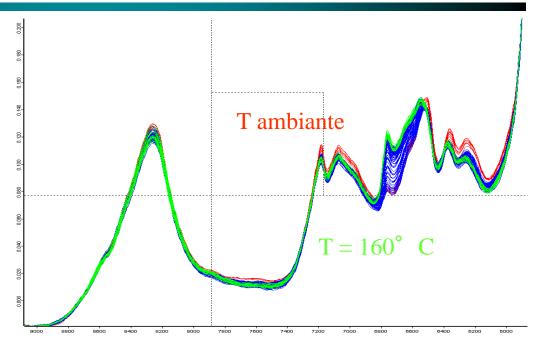
Méthode NIR at-line équivalente à Référence

Pour aller plus vite.... Suivi NIR on-line de la polymérisation

Mesure en réflexion diffuse dans les poudres

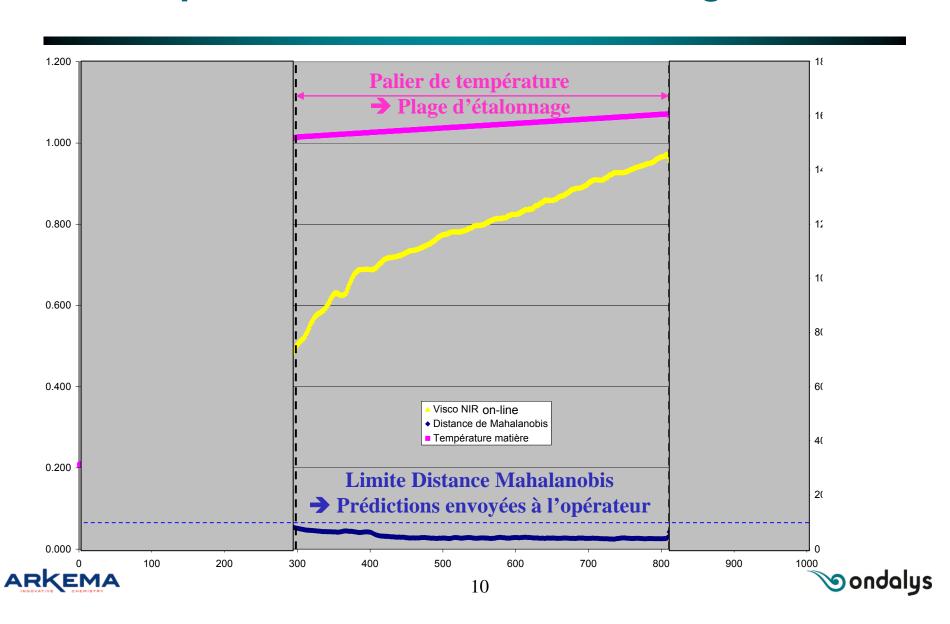






Evolution du spectre NIR avec la température

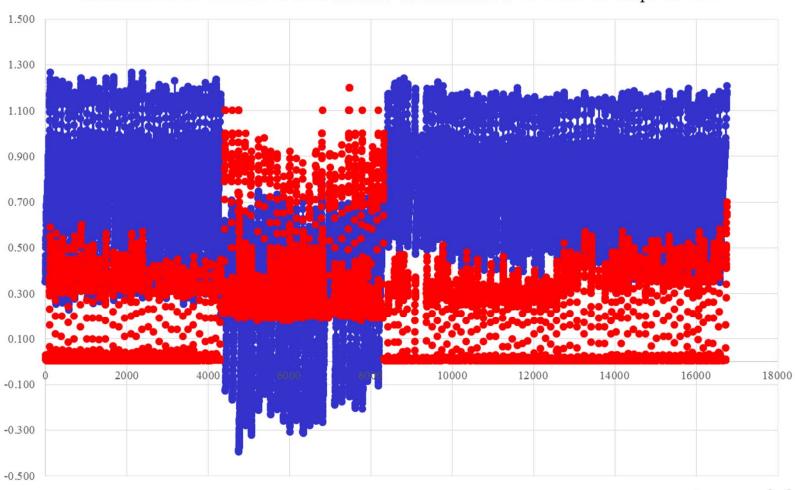
Effet de la température sur le spectre moyen infrarouge


Effet de la montée en température sur le spectre proche infrarouge

→ Etalonnage sur les spectres au palier de température à 160° C

Exemple de suivi de réactions en ligne : usine

Conclusion


- Analyse NIR « at-line » dans l'atelier
 - Pilotage par NIR
 - Résultats équivalents à la mesure de référence
 - Étalonnage réalisé à température ambiante et sur produit sec
 - Temps de réponse divisé par 8 à 10 par rapport à la méthode de référence
 - Modèles transférables entre plusieurs spectromètres
 - Importance du suivi des appareils (précision en nombres d'onde sur la vapeur d'eau, variation inférieure à 0.1 cm⁻¹)
- Analyse NIR « on-line »
 - Étalonnage à partir des spectres au palier à 160C en les corrélant aux valeurs NIR at-line
 - Temps de réponse divisé par 8 à 10 par rapport au NIR at-line
 - 1 mesure toutes les minutes pour plus de précision dans l'arrêt de la polymérisation
 - Logiciel "process" permet de transmettre les données directement vers l'automate de contrôle de la production
 - Suivi de la viscosité avec déclenchement sur la distance de Mahalanobis

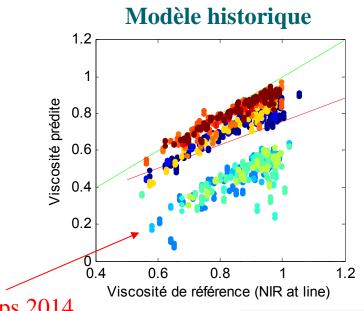
On va plus vite, mais...

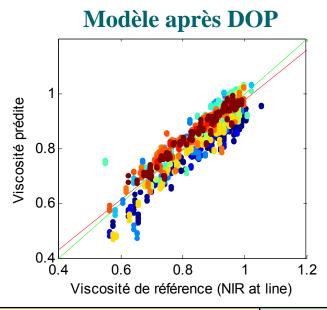
Prédiction de la viscosité et de la distance de Mahalanobis au cours du temps en 2014

Donnez du sens à vos données Making sense of your data

ondalys

Prestation de services et formations en chimiométrie

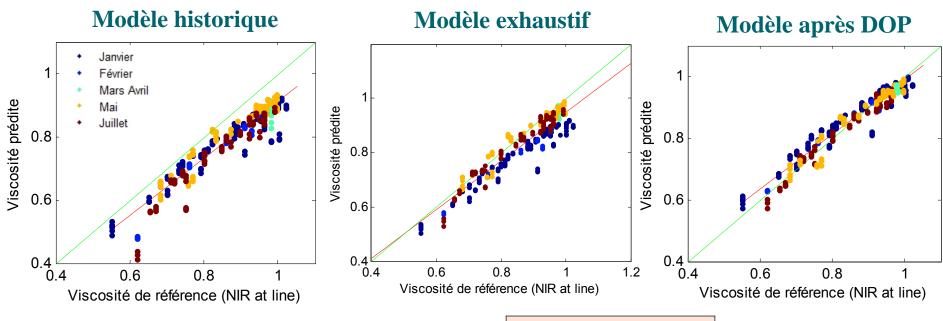

Méthodes


- Diagnostic du problème de prédiction en ligne
 - Problème détecté en 2014
 - Et retrouvé sur 2015...
- Comparaison de diverses stratégies pour l'amélioration de la robustesse du modèle en ligne – sur 2014 et 2015
 - Modèle PLS exhaustif
 - Besoin de **nombreux** échantillons perturbés et de leur valeur de référence
 - Modèle valable même si la perturbation disparait
 - Modèle PLS orthogonalisé (DOP¹)
 - © Besoin de **peu** d'échantillons perturbés et de leur valeur de référence
 - Modèle valable même si la perturbation disparait
 - © N'existe pas dans les logiciels commerciaux
 - Besoin d'une expertise

Résultats

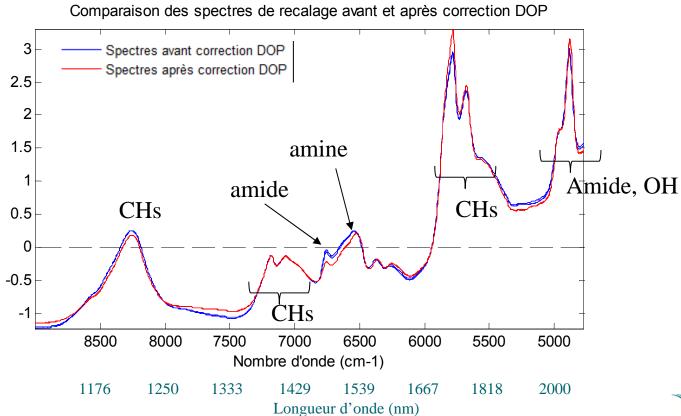
• Prédictions 2014

Printemps 2014


				Modèle						Test 2014				
	Nb éch.	CPs DOP	LVs	Gamme	R² etal	SEC	RPD	R ² CV	SECV	RPD CV	R ²	SEP	biais	RPD
Modèle historique	3293	i	9		0.94	0.031	3.94	0.90	0.038	3.20	0.15	0.253	-0.190	0.48
Modèle Exhaustif	3293 + 1443	ı	11	0.49 - 1.02	0.94	0.029	4.18	0.90	0.038	3.16	-	-	-	-
Modèle DOP	3293+20	5	9		0.95	0.027	4.55	0.92	0.034	3.59	0.81	0.049	-0.012	2.47

Résultats

• Prédictions 2015 : validation des modèles


					Test	2015			
	Nb éch.	CPs DOP	LVs	R²	SEP	biais	RPD		
Modèle historique	3293	-	9	0.89	0.083	-0.074	1.46		
Modèle Exhaustif	3293 + 1443	ı	11	0.89	0.041	-0.018	2.92		
Modèle DOP	3293+20	5	9	0.94	0.028	0.004	4.29		

Correction des spectres par DOP

- → Détection de plusieurs sources de variation
 - problèmes liés à la température
 - background

Conclusions

- Problème de robustesse constaté en ligne
- Modèle exhaustif, c'est bien
- © Modèle orthogonalisé, c'est mieux
 - Identification de la perturbation
 - Applicable d'une année sur l'autre
 - Valide même quand la perturbation disparait
- Pas disponible sur les logiciels équipementiers NIR

