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1) CONTEXT AND OBJECTIVES: « Soil reflectance spectra measurements:
Research in agriculture precision and environmental monitoring leads to the observation of several - ASD (Analytical Spectral Devices Inc.)

physical and biophysical processes in the soil conditions that requires at least to know the soil structure - spectral range: 350-2500nm i:
and composition. Thereafter, the use of VNIR-SWIR Laboratory spectroscopy (350-2500nm) has - number of spectral band: 1961 (= Nj;;) i
proven to be a good alternative to costly physical and chemical laboratory soil analysis. As well, the - spectral sampling: 1nm

number of studies using VNIR-SWIR hyperspectral airborne imaging in soil property mapping has also

= Physico-chemical analysis for 4 soil properties:
increased (e.g. [1]). The main issue is now to achieve to transfer these promising results to future satellite v v prop:

and Unmanned Aerial Vehicle (UVA) data. As such, the objective of this study is to assess the sensitivity - Clay content (granulometric fraction < 2um) E T E = L A T
of soil property prediction results to different spectral configurations (including the spectral resampling - Calcium Carbonate (CaCO3) e
[2], the spectral resolution and the number of spectral bands); which may offer a first insight of the - Iron oxides
potential of future hyperspectral UAV and satellite sensors (i.e. HYPXIM, PRISMA, Shalom, ENMAP -pH
and HysplRl) for soil applications and mapping. = Correlation relationships between the soil properties:
Peyne Lebna
2) MATERIALS: Clay 1CaCO3 Jiron _JpH Clay  [CaC03 Jiron —JpH
Clay 1.00 -0.13 0.53 -0.04 Clay 1.00] 0.14 0.3
= Study area; I?anCO3 1.00 -?.gg ggs CaCO3 1.00 -0.07 0.5!
2 Mediterranean sites with different 2 - = Iron 1.00] 01
: : pH 1.00 pH | 1.00
soil environments

= Soil property distribution among site (T: Lebna, P: Peyne):
Clay (a/kq): CaCO3 (g/kq): Iron (9/1009): pH:

- Site n°1:

Peyne, in France (0.91km2)
- Site n°2:

Lebna, in Tunisia (300km2)

= Collection of in-situ soil samples
(site, number, year):

- Peyne, M =148, 2010
- Lebna, M =262, 2008-2009-2010
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3) METHODOLOGY:

{ = A spectral configuration is defined by 3 parameters, the number of spectral bands (N), the spectral resolution (FHWM)

S and the spectral interval sampling (Sl). A gaussian shape filter is used for resampling the soil spectra from 440-2400nm.
d:éma = The hyperspectral configurations have FHWM = Sl, except for the reference Init_1/1 (ASD spectra)
Init_1/1 Config_3/10 |Config_5/10 |Config_10/10|Config_40/40
Spectral Hyperspectral: N, FHWM, S1 'g (\SIC‘\IIIRR) : 13 13 13 :g
processing Multispectral : sensor specifications E— FH(WM (V)NIR) ] I J I o
FHWM (SWIR) 10| 10 10 10 40
Choice of soil property N 1961 328 253 197 50)
(Clay, €acO,, Iron, pH)
= The multispectral configurations are based on the satellite specifications spectral filters of ASTER and LANDSAT-7
Data Calibration/validation
BreHaration database separation ASTER spectral specifications (N=9) LANDSAT-7 spectral specifications (N=6)
Spectral bands 560 660 810 1650/ 2165 2205 2260/ 2330 2395 |Spectral bands 480 565 660 825 1650 2220
Preprocessing of soil Spectral resolution 80 60 100 100 40 40 50 70 70 |Spectral resolution 65 80 60 150/ 200 260
spectra and Calibration
outliers removal
i = 2/3 of total samples (M) are selected for calibration and 1/3 for validation
1] . .
"ﬁ.p.i{fs"pi‘é';f?' = The spectra reflectance are converted into absorbance and the data are mean-centered
" Outliers are removed after Principal Component Analysis and Mahalanobis distance computation
Bt MULTI. -
processing ~ ) ) ) — !
= Multivariate Linear Regression (MLR) is performed with multispectral configurations and Partial Least Square
Regressions (PLSR) for hyperspectral ones to deal with collinearity variable issues
IBﬂm_ﬂrapfm . Bnﬂ{ww‘n'd‘ . = The selection of the optimal number of Latent Variable (LV,) is assessed by observing PLSR prediction over a given range of
MLRicamng/averictien] [BLSA eaining /preaiction ——— | LV (LV,y set to 10) based on 2 criteria: the minimum of Prediction Residual Error Sum of Squares (PRESS) and the divergence
of the PLSR coefficients (b-coeff.)
RANWW_W‘?“"“ = The prediction accuracy measures are computed with the boostrap procedure applied on MLR/PLSR learning and prediction
(R, RMSE, bias, variance) \With a repetition of 99 (Nyoo)

4) RESULTS: Site: Determination coefficient for the prediction of soil properties over  Spectral correlation coefficient among the
the validation dataset for the two test sites: M samples for the two test sites:
= For LANDSAT configuration, prediction is inaccurate for Iron, pH and CaCO; (lack ¥ |
of the 2340nm band), except for Clay (P) with a high mean content and distribution 09 1
0.8 = - — i
= No significant degradation from ASD initial configuration to hyperspectral 07 4 B © @
configurations until ASTER configuration for predicting soil properties with high . \ % o ¥ B
mean content/distribution and with a spectral signature such as Clay (P+L), Iron S 5
Pevne o 0.5 . 2
(P+L) and CaCO3 (P) ; = [
©
= Soil properties having a short spectral absorption feature are sensitive to (P) 0.3 = R?
the spectral resolution and central band such as CaCO3 (P+L) between Init_1/1, 0.2 ja
Config.3/10 and Config_ASTER 0.1 4| =Clay ——CaCO3 Iron pH |~ [
= Soil properties with weak mean/distribution are unpredictable like CaCO3 (L) k3 - Wavelengths
and pH (L), also if they do not have a spectral signature like pH 09 + —_———— . . - .
= The prediction performances of soil properties without spectral signature 087 .
(pH) decrease along the configurations since the number of spectral bands or <
decreases 248 g g
2 05 °
= The role of correlation relationships between soil properties can increase Lebna « % [4 N
prediction performances like between pH (P) and CaCO3 (P), as well as (L) - : . g -
correlation between spectral bands among spectra 0z d % -
01
5) CONCLUSIONS: 4
v = S . Wavelengths
= Prediction performances are dependent of the initial soil property mean content & @ﬂ)‘“ @ga“ & Ral @«‘3" &
and distribution, soil property correlation relationships, and correlation between & & & u & SF Configuration: Init 1/1
spectral bands that could be site-specific el

= Following the good results of multispectral scenarios (ASTER), are REFERENCES
spectroscopic instruments over-designed for soil characterization? A solution [1] Gomez, C., Lagacherie, P, Coulouma, G., 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne
might be spectral feature selection [3] ; oderma, 148(2), pp.141-148. ) ) ) )

[2] Peng, X., Shi, T., Song, A., Chen, Y., Gao, W., 2014. Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods. Remote Sensing, 6(4), pp.

= Perspectives: impact of spectral configurations to hyperspectral airborne  2699-2717. ) ) ) ) ’ L ) )
data for soil property mappin [3] Vohland, M., Ludwig, M., Thiele-Bruhn, S., Ludwig, B., 2014. Determination of soil properties with visible to near- and mid-infrared spectroscopy: Effects of spectral variable
ata Il property mapping selection. Geoderma, Vdl.223-225, pp.88-96.




