3D front-face fluorescence spectroscopy for differentiation between Extra Virgin Olive Oils (EVOO) and non EVOO

Lourdes Lleó García , Natalia Hernández-Sánchez,

Faten Ammari, Jean-Michel Roger, Teresa Cuadrado, Margarita Ruiz - Altisent

lourdes.lleo@upm.es

LPF-TAGRALIA, Universidad Politécnica de Madrid, CEI Moncloa, Spain UMR ITAP, IRSTEA Montpellier, France

Relevant results will be published soon

The problem

- Olive oil is very important economic share in EU, mediterranean area (SPAIN, ITALY main exporters)
- Olive oil trade have spread all over the world
- Developed EU Standards must take into account new methodolologies for authentification, to detect adulteration, oxidation status

Olive oil presents fluorescent compounds

 $\begin{array}{l} \textbf{Antioxidants:} \ phenolic \ , \\ \alpha \ to copherol, \\ chlorophyll \\ \textbf{Related to freshness} \end{array}$

Oxidation products: primary, secondary

Extra Virgin Olive Oil is free from defects. Degradation due to oxidative processes, decreases antiox. and increases ox. products

Objetive

To discriminate Extra virgin olive oils EVOO from Non extra virgin olive oils non EVOO by means of the high resolution fluorescence espectroscopy technique 3D front-face

Front-face 3D spectra

Conclusions

- 3D fluorescence spectroscopy is able to sense differences in oxidation status of olive oils
- Detailed spectral features are provided by this technique

Thank you for your attention issue

ACKNOWLEDGEMENTS

- The funding of this work was provided by CETAL (Lugo, Spain).
- Juan Ramón Izquierdo (Laboratorio Arbitral Agroalimentario – MAGRAMA, Madrid, Spain) provided analytical support.