Paul Geladi

Professor of Chemometrics

Forest Biomaterials and Technology Swedish University of Agricultural Sciences 90183 Umeå paul.geladi @ slu.se

NIR hyperspectral imaging: sampling and penetration depth issues

Overview

1. Historical overview, spectroscopic and sampling principles

2. Instrumentation with small examples

3. Sampling and 3D aspects of hyperspectal imaging

From the internet (search for 'spectrum')

Sampling and sampling error (freely after Kim E)

- 1. Material (lot) natural heterogenity
- 2. Grab sampling vs composite sampling
- 3. Sample reduction
- 4. Spatial reduction 3D->2D->1D
- 5. Sampling errors vs. analytical error
- 6. Accuracy and precision

General: good to have equipment available for -sampling -grinding -mixing -size reduction

Also important: fractionation!!

Sampling and sampling error

Determine what the goal of the study is and adapt sampling to it

Grape harvest: lot analysis

Comparing cultivars: 25 grapes of each

Comparing 2 instruments: 5 ml of grape juice

Imaging equipment

Homebuilt historical How we started at Röbäcksdalen

Homebuilt

Overview

1. Historical overview, spectroscopic and sampling principles

2. Instrumentation with small examples

3. Sampling and 3D aspects of hyperspectral imaging

From 2000s Published

Contour 2D (T)

Scatter 2D (T)

Scatter 2D (T)

t[1]

Grey = non classified 6042 Red = edges 2060 pixels Green = PP 5632 pixels Blue = PP 6264 pixels Orange = PP 6151 pixels Cyan = PET 4136 pixels Magenta = PET 5993 pixels Pink = 2x PET 9958 pixels

Sometimes you don't need advanced algorithms

Just clever subsampling

Read more!

2007

TECHNIQUES AND APPLICATIONS OF HYPERSPECTRAL IMAGE ANALYSIS

EDITORS HANS F. GRAHN | PAUL GELADI

WILEY

From about 2005 KBC Published

Sisuchema and Umbio

Sisuchema, FI Umbio, SE

20-40 sec

100 200 300 400 500 600 700 800 900 1000 1100 1200

PHJ+PHM PSJ PSM

Analysis of 320x ≈1000 pixel mosaics

Wavelength nm

PLS prediction of extractives content Calib on 22 averages Pred pixelwise > 300 000 predictions

See also Lestander, Geladi, Larson, Thyrel JNIRS 2012

Videometer LED scan

Videometer DK

Kempe 2012

Different sampling situations

- Lot to imaged sample(s)
- Always explain how the imaged sample relates to a lot
- Inside samples because you are imaging
- (each pixel is a sample again)
- Describe this situation in sampling terms